
Fast and Efficient Data Science Techniques for
COVID-19 Group Testing∗

Varlam Kutateladze† and Ekaterina Seregina‡

February 20, 2021

Abstract

Researchers and public officials tend to agree that until a vaccine is readily avail-
able, stopping SARS-CoV-2 transmission is the name of the game. Testing is the
key to preventing the spread, especially by asymptomatic individuals. With test-
ing capacity restricted, group testing is an appealing alternative for comprehensive
screening and has recently received FDA emergency authorization. This technique
tests pools of individual samples, thereby often requiring fewer testing resources
while potentially providing multiple folds of speedup. We approach group testing
from a data science perspective and offer two contributions. First, we provide an
extensive empirical comparison of modern group testing techniques based on sim-
ulated data. Second, we propose a simple one-round method based on `1-norm
sparse recovery, which outperforms current state-of-the-art approaches at certain
disease prevalence rates.
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1 Introduction

There is broad consensus among economists and epidemiologists that massive test-

ing is one of they key ingredients to preventing the spread of COVID-19. However,

large-scale testing is not realistic due to substantial restrictions in testing kits, chemi-

cal reagents, skilled personnel and time. Group testing, also known as pooled testing

or specimen pooling, is an appealing alternative to individual testing that suggests to

combine a set of individual specimens into a common pool, and test the pool rather

than each individual sample. As long as the disease prevalence is not too large, testing

pooled samples permits to considerably reduce the total number of tests required for

diagnosing the population.

First experiments with pooling samples trace back to dilution studies in 1915 (Hughes-

Oliver [2006]), which attempted to determine the presence or absence of organisms in

a fluid based on pooled information. Researchers cultured samples of the fluid to let

the bacteria, if they were present, grow, which served as a test. The results were then

gathered across the samples to infer the bacterial density in the original fluid.

Many academics, however, attribute the invention of group testing to a Harvard

economist Robert Dorfman, whose influential work (Dorfman [1943]) proposed a sim-

ple pooling method for weeding out syphilitic men called up for induction. Instead of

analyzing individual blood samples for the presence or absence of a ”syphilitic anti-

gen”, it is suggested to examine pooled samples combining the individual blood sera

into groups of five. If the corresponding men are healthy, the pooled test should be

negative. On the other hand, if at least one of the patients is syphilitic, the pool will

contain antigen, which the test is supposed to reveal. In that case, all associated pa-

tients need to be retested individually. Putting aside possible dilution concerns, it is
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clear that such strategy leads to savings of chemical reagents and higher overall testing

capacity in a population with low disease prevalence. The idea is illustrated in Figure

1.

Stage 1:

♂ ♂ ♂ ♂ ♂

♂ ♂ ♂ ♂ ♂

♂ ♂ ♂ ♂ ♂

♂ ♂ ♂ ♂ ♂

♂ ♂ ♂ ♂ ♂

♂ ♂ ♂ ♂ ♂

=⇒ Stage 2:

• • • • •
♂ ♂ ♂ ♂ ♂

• • • • •
• • • • •
♂ ♂ ♂ ♂ ♂

• • • • •

Figure 1: Dorfman pooling illustration.
“User” icons represent individuals, red are infected and grey are healthy. In the first stage, all
N = 30 specimen are pooled into N/n = 6 groups (rows) of n = 5, which are then tested. In

the second stage, everyone in infected groups (rows two and four) is tested individually. As a
result, it is possible to detect k = 2 positives with 6 + 10 < N = 30 tests.

Due do its simplicity, Dorfman’s two-stage approach has found widespread use in

medicine. Many of its properties are also readily available. Suppose we collectN indi-

vidual samples and pool them intoN/n groups of size n. Given the disease prevalence

rate per hundred, p (which is also the probability of a randomly selected individual

being positive), the expected number of tests for diagnosing the population is

E(T ) = N/n+ (1− (1− p)n)︸ ︷︷ ︸
P(at least one positive)

n
N

n
. (1)

The first term on the right-hand side corresponds to the number of tests in the first

stage, the second term is n times the expectation of a random variable distributed as

Bi(N/n, (1−(1−p)n)), characterizing the number of positive groups in the second stage.

Clearly, this method is more beneficial at a lower prevalence rate p. For fixed E(T ) and
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p, one could also optimize over the pool size n to get the largest possible coverage N ,

n∗ =
2W (−1

2

√
− ln(1− p))

ln(1− p)
, (2)

where W (·) is the Lambert W function. Notice that this also is decreasing in p and, in-

terestingly, is independent of E(T ). The expected number of tests per person is approx-

imately minimized when the group size is n = 1/
√
p and hence the expected number

of tests per person is 2√p. Graphs illustrating the above relationships are provided in

Appendix A.1.

Sterrett [1957] proposed a modification to Dorfman’s second stage: instead of test-

ing every individual, one would only do so until a positive sample is found, after which

continue with group testing. In that case, if the prevalence is low, it is likely that the new

sub-pool will be negative. This leads to an increase in savings of tests from Dorfman’s

80% (compared to individual testing) to 86% at 1% rate. There have been other alter-

natives as well, e.g. Sobel and Groll [1959], halving techniques in Litvak et al. [1994]

and others. These methods generally trade off higher efficiency with more complexity

and longer wait times.

In group testing literature, Dorfman’s approach and its modifications are classified

as adaptive (or hierarchical), in a sense that they “adapt” to the results of preceding

stages. An alternative approach, known as non-adaptive (or non-hierarchical), designs

a single-stage experiment, results of which should allow to infer (often in a probabilis-

tic manner) the original assignment of positives and negatives. This should generally,

although not necessarily, come at the cost of having to run more tests overall since

the sequential approach takes in more information. A distinctive feature of the non-

adaptive approach is in assigning a single individual to multiple groups, i.e. groups are
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overlapping. How to design such assignment is a crucial question that is considered

later. In a scenario such as the current SARS-CoV-2 pandemic, with the disease spread-

ing fast and standard testing kits not showing results immediately, such non-adaptive

approaches would have a clear advantage.

Furthermore, with multiple stages of testing, adaptive techniques also bear the risk

of running out of tests before learning the outcomes. Given a limited number of tests,

Dorfman’s approach may require more test than are available. In contrast, single-round

designs do not suffer from such indeterminacy.

Hence, we focus on such “fast” single-stage techniques. We consider several recent

combinatorial and probabilistic algorithms. Importantly, we propose a simple method

based on `1-norm sparse recovery, which outperforms the above algorithms.

Pooling strategies help resolve two kinds of problems, namely estimation and clas-

sification. The first seeks to estimate the prevalence of positive individuals in a popu-

lation. The second, which may or may not rely on the information on estimated preva-

lence, aims to identify the infected individuals. The performance is typically gauged by

the expected number of tests required for a given specificity or sensitivity, or conversely,

based on predictive accuracy for a given number of tests. We focus on classification.

1.1 RT-qPCR test

The two main ways of determining whether an individual has a SARS-CoV-2 virus

are (1) to check for the presence of antibodies to the virus, (2) to check for the pres-

ence of the virus RNA itself. The former, although capable of uncovering whether a

recovered individual had the virus in the past, is less widespread; the latter includes

so-called reverse transcription quantitative polymerase chain reaction (RT-qPCR), the
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gold standard for COVID-19 testing recommended by the Centers for Disease Control

and Prevention. Though popular, massive individual PCR testing is not possible due

to serious constraints in equipment, chemical reagents and skilled personnel. The re-

sulting readouts of RT-qPCR are of key interest to this study so we briefly describe the

testing process.

To perform this test, nasopharyngeal swabs from subjects are collected and diluted

in a fluid medium. The first stage, reverse transcription, then transforms the virus RNA

to complementary DNA (cDNA). This eventually allows to start the next stage, poly-

merase chain reaction, which aims to exponentially amplify the viral cDNA molecules

through the process that involves up to nearly 40 cycles of heating and cooling. To trace

this increase, the virus-specific sequences are marked by fluorescent. The testing ma-

chine then measures the amount of fluorescent signal in real time and displays it as

a function of cycles. This information we are interested in is when (if at all) the fluo-

rescence exceeds the critical level associated with a positive subject. This is given by

a cycle threshold (Ct), the number of cycles completed before crossing the threshold.

The subject is then declared positive if the threshold is exceeded before about 40 cy-

cles. TheCt indicator is (negatively) correlated with the original viral load, with larger

initial viral loads leading to sooner crossing of the threshold and thus shorter cycle

thresholds. The entire process takes up to approximately 4 hours.

The information on cycle thresholds of pooled samples is the key input to group

testing algorithms. Surprisingly, many known group testing algorithms do not take

this quantitative information into account and instead work with degenerate binary

transformations. The algorithm proposed in this study is capable of not only incor-

porating the quantitative information, but also producing corresponding quantitative
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predictions measuring the original individual viral loads.

1.2 Biomedical considerations

One of the major concerns with pooling approaches is dilution. Fortunately, there is

growing evidence that pooling of SARS-CoV-2 with negative samples does not lead

to substantial dilution of the virus DNA. In a recent study (Yelin et al. [2020]), Israeli

researchers discovered that it is possible to detect a single positive SARS-CoV-2 sample

in pools of up to 64 samples with reasonably high accuracy. That is, the fluorescent

signal of a pooled positive sample, diluted with up to 63 negative samples, amplifies

sufficiently to cross the required threshold. Other investigations (Abdalhamid et al.

[2020], Hogan et al. [2020], Mutesa et al. [2020]) tend to agree with such claims.

Pooled testing for SARS-CoV-2 has been conducted in a number of countries, in-

cluding the United States (Stanford Health Care Clinical Virology Laboratory and Ne-

braska’s Public Health Laboratory), Germany (University Hospital Frankfurt at Goethe

University), China and Israel (Rambam Health Care Campus).

Group testing has been used for detecting the HIV (Emmanuel et al. [1988]); in fact,

it is now a routine option in blood screening. Pooling not only decreases the cost but

also the probability of making an error in low disease prevalence populations. Pool-

ing has also been deployed against malaria (Taylor et al. [2010]), influenza (Van et al.

[2012]) and a few other diseases. It has also found its use in non-medical settings,

for example detecting defective units in manufacturing, computer fault diagnosis or

testing collections of documents in data forensics.
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2 Non-adaptive group testing

We first briefly review some of the recent non-adaptive algorithms introduced in the

literature (Chan et al. [2011]). As all are one-round approaches, it is required to con-

struct anm×N pooling matrixA 1, which would assign each of theN individuals to one

or more of them groups. As opposed to adaptive testing, we may have the same subject

sample split among several groups. Figure 2 illustrates the idea. The corresponding

pooling matrix has its (i, j)th entry equal to one if an ith individual is assigned to group

j, i ≤ N, j ≤ m, and zero otherwise. One would typically also normalize the matrix,

but this does not raise any substantial challenges so we omit this issue.

♂ ♂ ♂ ♂ ♂ . . . ♂
Test 1 ○ + ○ + + . . . +
Test 2 + ○ + ○ + . . . +
Test 3 + + ○ + ○ . . . +
Test 4 ○ + + + ○ . . . ○

. . .
Test m + + ○ + + . . . ○

Figure 2: Illustration of a pooling matrix assigning N individuals to m pooled tests.
A black circle indicates that the corresponding individual (column) has been assigned to the
given test (row). If an individual is assigned to several tests, his sample is split accordingly.

Once the pooling matrix is specified, one then observes the results ofm pooled tests

via anm×1 vector y and the goal is to identify which of theN � m individuals are truly

positive. We briefly discuss novel algorithms and provide an intuitive explanations

behind their principles. Exact algorithmic formulations can be found in our code.

Combinatorial Basis Pursuit (CBP) is a simple algorithm that is based on the fol-

lowing idea: declare all individuals that were included in negative pools as negative

(since if at least one sample was positive, the entire group would have been positive),
1This matrix is not to be confused with the (N/n) × n Dorfman “matrix” in Figure 1. Dorfman ap-

proach does not involve allocating individuals to groups.
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and declare the remaining individuals as positives. Since this strategy would identify

healthy individuals for certain, it will not produce any false negatives.

Instead of looking at each test (row), one may instead try to decode the matrix

“column”-wise, i.e. by going over the individuals. This is what the combinatorial

orthogonal matching pursuit (COMP) algorithm does: if all tests an individual par-

ticipated in turn out to be positive, then the individual is considered to be infected,

and negative otherwise. This deciphering method never produces false negatives, only

false positives. A false positive would only occur if a healthy individual happened to

always participate in tests that contained at least one infected sample. Of course the

probability of this happening decreases with m.

Definite defectives (DD) algorithm starts with COMP to leverage its ability of iden-

tifying true negatives. Once COMP is over, DD switches to “row”-wise search by look-

ing at positive tests and seeks to determine individuals that are “definite defectives”

(positives). All remaining subjects are declared negative. This reversal in the algo-

rithm leads to DD producing only false negatives, and no false positives. This leads to

greater accuracy in sparse settings: because there are a lot more healthy subjects, one

should by default assume that an individual is not infected, all else equal.

Finally, sequential COMP (SCOMP) further attempts to improve DD by modifying

its last step of labeling remaining subjects as negatives. The key is to observe that if the

current set of individuals that are declared positive cannot explain all of the positive

pooled tests, one can do better by sequentially declaring potential positives as positives

until the set of positives accounts for all positive tests. From a list of potential candi-

dates, the algorithm picks the one that would account for the largest number of unex-

plained tests. SCOMP has been shown to perform close to the information-theoretic
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bound.

3 Problem formulation

We now turn to our algorithm that leverages recent advancements in the field of com-

pressed sensing in engineering and statistics literature (Candes et al. [2006], Donoho

[2006]). Our main goal is to efficiently infer x, the N -dimensional sparse vector of in-

dividual viral loads, from m� N available group test results stacked in a vector y. In

general, we have y = g(Ax) + ε, however we will restrict our attention to the simplest

case when y = Ax+ε. Hence, A ∈ Rm×N represents a set of linear measurements on the

variable of interest x. This formulation has a crucial difference with regression type of

problems: in our setting one gets to choose how to design the pooling matrix A, while

in regression problems A is pre-determined by the data. Thus, there are two steps to

solving such problems.

The first step is to encode the sparse signal, by designing a proper pooling matrix

A. This matrix provides the assignments for each individual specimen to the corre-

sponding groups and must satisfy certain desirable conditions pertaining to the group

testing problem.

The second step attempts to decipher the first step with fewest test measurements.

For a large-dimensional vector x finding the corresponding sparsest vector that would

be consistent withm pooled observations is an NP-hard problem. However, recent ad-

vancements in engineering allow to transition this problem to a convex domain where

exact decoding is feasible with high probability.

While x is generally a vector of quantitative measurements of all individuals, one

can equivalently think of it as a sparse vector, i.e. with most entries equal to 0 (as-
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sociated with healthy individuals) and very few 1’s, without loss of generality. What

matters is that the vector needs to be sparse in some transformed coordinate system.

3.1 Pooling matrix design

We first focus on the design of a pooling (also known as sensing or measurement) ma-

trix A. Due to the nature of our primary application, we only consider sparse pooling

matrices with few nonzero elements. When properly formed, this should ensure there

is not too much dilution: a single sample is not split into too many subsamples and any

one group sample does not contain too many specimens. The simplest approach would

be to generate a random Bernoulli matrix with entries, which together with a normally

distributed random matrix, has been shown to satisfy desirable properties, mainly the

null space condition (NSC) and the restricted isometry property (RIP) discussed later,

that guarantee a precise recovery of the original vector of interest with high probability.

We instead use a pooling matrix that was proposed in a different branch of group

testing literature. Known as a constant column weight design (Aldridge et al. [2016]),

it was shown to outperform simple Bernoulli matrices in terms of its encoding capabil-

ities. The initial approach outlined in Aldridge et al. [2016] constructs A by inserting

up to an L of ones into each column. Concretely, L indices of each column are sampled

with replacement and ones are inserted in the unique positions. This complication

seems to be necessary for their proofs, however the real performance does not depend

on whether one bootstraps or simply permutes a fixed number of ones. Hence, we fo-

cus on a simpler, permutation version. One example of such matrix with N = 6, L = 2
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and m = 4 is 
1 0 1 0 0 1

0 1 0 1 0 1

1 1 0 0 1 0

0 0 1 1 1 0


As discussed earlier, the ith individual is assigned to group j only if the (i, j)th entry is

1. This design avoids too much dilution as long as 0 < L < m � N , and outperforms

Bernoulli design. For simplicity, in our experiments we set L = dm/2e (rounded up),

but this value could be theoretically and practically optimized as is done in Aldridge

et al. [2016] and Johnson et al. [2019]. Importantly, we prove that this design is RIP

which has immediate theoretical implications, which are discussed in the next section.

Theorem 1. A random matrix A ∈ Rm×N of constant column weight design with L ones in

each column satisfies the restricted isometry property with high probability, specifically there

exists δ ∈ (0, 1) such that

(1− δ) ‖x‖22 ≤ ‖Ax‖
2
2 ≤ (1 + δ) ‖x‖22

holds with high probability for any x ∈ RN and 0 < L < m.

Proof. See Appendix A.2.

The `p norm of a vector v ∈ Rd is ‖v‖p =
(∑d

i=1 |vi|p
)1/p, which is a norm for 1 ≤

p ≤ ∞.

3.2 `1-norm sparse recovery

Oncemmeasurements in y are formed, one can employ several strategies for decoding

the original signal. A direct, brute force approach to tackle the problem would be to
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find the sparsest vector of viral loads x that is consistent with the linear measurements,

that is

min
x∈RN

‖x‖0 s.t. ‖Ax− y‖2 ≤ ε.

Unfortunately, this problem is NP-hard as its solution requires an exhaustive search

over all possible combinations in x, although this may still be feasible for low-dimensional

problems. Luckily, a convenient convex relaxation is available, which has been proven

to yield accurate solutions as long as the sensing matrix A satisfies RIP (Candes et al.

[2006],Donoho [2006]). This is a sufficient condition, which Theorem 1 shows to hold

with high probability. In practice one could generate a random matrix and attempt to

verify whether RIP holds for a given matrix, although doing so is by itself NP-hard

(Bandeira et al. [2013]). The corresponding convex alternative is

min
x∈RN

‖x‖1 s.t. ‖Ax− y‖2 ≤ ε. (3)

This is known as Basis Pursuit Denoising (Shaobing Chen and Donoho [1994]),

although many statisticians are more familiar with its equivalent formulation, Lasso,

min
x∈RN

‖Ax− y‖22 + λ ‖x‖1

The two problems are identical for certain choices of ε and λ. We simply add a nonneg-

ativity constraint x ≥ 0 which reflects the inherent characteristic of the problem and

also improves the empirical performance.

This type of `1-norm recovery uses m = O(k log(N)) tests while standard group

testing algorithms requirem = O(k2 log(N)) tests. Another advantage of this approach
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is its ability to handle real-valued quantitative readouts; many group testing algorithms

are only capable of dealing with binary measurements. Furthermore, the output is also

a real-valued number estimating individual’s viral load.

4 Application

This section compares the performance of the above algorithms in simple numerical

experiments with no noise. For clarity of exposition, the vector of interest x is generated

to be a binary 0-1 vector instead of a real-numbered qPCR-like measurements. More

general treatments can be found in our code.

We consider a case with N = 100 specimens where there are k = 2 true positive

cases. This is a conservative estimate in a sense that this share of positives is larger

than the share of active cases in the United States as of December 1, 2020 (Worldometer

[2020]). In Appendix A.3 we additionally report cases with k = 1, 3, 4, 5.

To illustrate, we generate a 100-dimensional binary vector with 2 ones and the sens-

ing matrices as described above to obtainm = 20 linear measurements. We then apply

the decoding algorithms to try to infer the original binary vector (both the number of

positive k and their positions) with only 20 measurements. Figure 3 demonstrates a

particular realization where only the proposed algorithm, denoted as SR (for sparse

recovery), is capable of correctly identifying the positions. Other algorithms produce

either false positives, false negatives or both.

Specifically, to obtain SR estimates we first solve

x̃ = argmin
x∈RN

‖Ax− y‖22 + λ ‖x‖1 , x ≥ 0, (4)
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which generally would not produce 0-1 estimates. Hence we simply round the esti-

mates at the threshold value of τ = .5, that is x̂i =


1 if x̃i ≥ τ

0 if x̃i < τ.

0

20

40

60

80

0

0.2

0.4

0.6

0.8

1

True COMP DD CBP SCOMP SR

Figure 3: Identification of negative and positive positions.
Only the proposed (SR) algorithm is able to successfully determine which samples

correspond to positive/negative specimens.

Next, we repeat this process for 1000 iterations across different group sizes m and

report the average root mean square error (RMSE) plotted against the number of test

measurements m in Panel A of Figure 4. RMSE is defined as ‖x−x̂‖2‖x̂‖2
, where x is a true

binary vector and x̂ is one of the estimates. We still keep N = 100 and k = 2, but

Appendix A.3 reports cases for k = 1, 3, 4, 5.

As can be seen, the proposed method makes approximately the same error with

m = 15 tests as the best alternative (SCOMP) with m = 30 tests. For comparison,

Dorfman approach would require approximately m = 30 tests and two testing stages.

As the more detailed comparison in Appendix A.3 shows, SR is still superior for k ≥ 2,

but loses dominance to SCOMP for k = 1.

However, RMSE does not tell the whole story. One is also interested in sensitivity

(or true positive rate) and specificity (or true negative rate). These are defined as the
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Figure 4: RMSE, Sensitivity, Specificity and ROC for N = 100, k = 2.
Panel A: RMSE of each approach as a function of test measurements m. SR outperforms

standard non-adaptive group testing algorithms. Panel B: Sensitivity of each approach as a
function of test measurements m. Panel C: Specificity of each approach as a function of test

measurements m. Panel D: ROC, thresholding SR estimates. AOC = .9995.

ratio of identified positives to all true positives and the ratio of identified negatives to

all true negatives respectively, and reported in Panel B and C of Figure 4.

Notice that CBP and COMP report perfect sensitivity. This is a sanity check since

these algorithms should not produce any false negatives. Among the other algorithm

SR is again a clear winner. Naturally, the relationship between the two groups reverses

for specificity: we have SR, COMP and DD achieving ideal (or almost ideal) specificity

with a minimum number of tests, while COMP and CBP slowly catch up.

Additionally, we plot the receiver operating characteristic curve (ROC) for SR in

Panel D of Figure 4, where we keep the same parameter values N = 100, m = 20,
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k = 2. The corresponding area under the curve (AUC) is .9995. This curve traces

the true and false positive rates for different values of the threshold τ . The figure is

indicative of a strong classification ability of the proposed method.

Finally, we report so-called improvement factors in Table 1, given as the ratio of

the number of specimens N to the expected number of tests required for achieving at

least 95% in specificity & sensitivity. When needed, the expected number is computed

through Monte Carlo averaging. An improvement factor measures the effectiveness of

a given method by computing how many more tests standard individual testing would

need compared to a group testing algorithm. It essentially provides an estimate of how

many individuals one group test effectively “covers”. For the five prevalence ratios, SR

dominates both the non-adaptive algorithms and Dorfman approach for k/N ≥ 2%,

while both CBP and SCOMP seem to be more efficient for k/N = 1%.

k
N

= 1% k
N

= 2% k
N

= 3% k
N

= 4% k
N

= 5%

Dorfman 4.02 3.37 2.93 2.60 2.34
COMP 8.10 4.69 3.63 2.80 2.21
DD 6.25 2.86 2.39 1.99 1.99
CBP 9.42 4.49 3.60 2.81 2.19
SCOMP 9.83 3.95 3.06 2.48 2.10
SR 8.69 7.14 5.54 4.42 3.07

Table 1: Improvement factors, N
E(# of tests) , for five different prevalence rates.

5 Related work

A closely related work by Yi et al. [2020] also considers the techniques based on com-

pressed sensing. However, there are differences in both encoding and decoding steps.

While their pooling matrix is also sparse, its 0-1 entries are generated from Bernoulli

distribution with probability .5. Aldridge et al. [2016] and Johnson et al. [2019] com-
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pared the encoding capabilities of Bernoulli and constant column weight design ma-

trices and documented substantial theoretical and empirical superiority of the latter

in nonadaptive testing settings. The superiority is even more pronounced for sparse

settings; in fact, such design “in sparse cases is the best proven performance of any practi-

cal algorithm” (Aldridge et al. [2016]). Furthermore, Bernoulli design is not suitable

for biomedical considerations as it is prone to undesirable extremes: one may have

columns with all zeroes (or all ones) which corresponds to the case when the sam-

ple is not used at all (or is being split into too many subsamples); this is excluded

by constant column weight design with 0 < L < m. Another design Yi et al. [2020]

consider are expander matrices, which perform on par with Bernoulli in their experi-

ments. However, the precise structure (for example, the number of ones per column)

and theoretical fitness of such matrices are not discussed. Their decoding algorithm

is non-negative BPDN (Eq. (3) coupled with a nonnegativity constraint) which has a

less readily available software implementation than non-negative Lasso. We were not

able to obtain the code of Yi et al. [2020] to make a direct comparison.

Another extensive study by Ghosh et al. [2020] also focuses on sparse nonadaptive

methods. Researchers used so-called Kirkman triple matrices, which as in our work

assign a finite number of 1′s per column. However, this design suffers from a major

restriction on the dimensions of the sensing matrix, m and N , the number of groups

and individuals respectively. Specifically, m is only allowed to be an integer multiple

of 3, while N needs to be an integer multiple of m/3. This makes direct Monte Carlo

comparison with classical approaches, as is done e.g. in Figure 4, difficult, since m

cannot vary freely. To resolve this by sequentially “truncating” their pooling matrix,

i.e. only taking the firstm rows from a fixed size 24×60 Tapestry matrix. The results are
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plotted in Appendix A.4. Our approach is more precise for lower disease prevalence

rates, approximately for k/N ≤ 8%. Finally, although their matrix is claimed to satisfy

RIP, we have not seen the proof.

6 Concluding remarks

Pooled testing has been around for more than 70 years and has been successfully em-

ployed against a number of diseases. There are reasons to believe that pooling can also

be effective against SARS-CoV-2. First, low prevalence of the virus is crucial to making

group testing effective. Second, the recent evidence with dilution experiments sug-

gests that pooling can be a viable method. Third, pooling is also compatible with the

widely used testing kits such as RT-qPCR. Finally, group testing has been authorized

by the FDA (FDA [2020]), which claimed it to be “especially important as infection

rates decline and we begin testing larger portions of the population.”

To this end, we considered a simple one-stage group testing method that is able

to diagnose a large number of specimens with the fewest number of tests and thus

substantially increase the throughput of testing. Our approach does not require to

know the number of positive samples in population to run and compares favorably

based on the experiments on synthetic data. It produces very few false positives and

false negatives, and is also capable of predicting viral loads. Compared to widely used

adaptive strategies it minimizes latency in delivering test results, while compared with

non-adaptive strategies it only requires m ∼ O(k log n) tests. The numerical results

suggest this approach is appealing for a wide range of prevalence rates; particularly, it

outperforms standard non-adaptive methods at prevalence rates greater than 1%, and

performs better than Kirkman matrices (Ghosh et al. [2020]) for prevalence rates lower
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than 8%.

Supplemental Material

The code supplement Kutateladze and Seregina [2020] is available in Google Colab

environment. It is written in Python and readily allows to replicate all the graphs pro-

vided, as well as produce additional exercises.
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Appendix

A.1 Dorfman group testing figures
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Figure A.1: Dorfman group testing
Upper left: Dorfman theoretical optimal pool size, n∗, plotted over the prevalence rate, p.

Larger pools sizes are preferred at a lower disease prevalence. Upper right: Dorfman expected
number of tests, E(T ), plotted over the prevalence rate, p. The benefits of classical approach
diminish at higher prevalence rates. Lower: Number of individuals, N , Dorfman strategy can

cover at 2% prevalence with T = 1500 tests, plotted over the number of groups, N/n. The
maximum is achieved at n = n∗.
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A.2 Proof of Theorem (1)

A = {a}ij is an m×N matrix where each column randomly permutes 0 < L < m ones

among zeros. Without loss of generality, let us assume that each column has been de-

meaned and normalized to be of unit length, i.e. divided by
√
L
(
1− L

m

)2
+ (m− L)

(
L
m

)2
=√

L
(
1− L

m

)
. It is then evident that E(aij) = 0 and E(a2ij) = 1

m
.

First, we want to show that for any fixed x ∈ RN , the random variable ‖Ax‖22 con-

centrates around its mean, i.e.

Pr
(∣∣‖Ax‖22 − ‖x‖22∣∣ ≥ ε ‖x‖22

)
≤ 2e−m(ε2/4−ε3/6). (5)

For i = 1, . . . ,m, denote ci the ith entry of Ax, i.e. ci =
∑N

j=1 aijxj , then

E ci = E

(
N∑
j=1

aijxj

)
=

N∑
j=1

E(aij)xj = 0,

E(c2i ) =E

( N∑
j=1

aijxj

)2
 = E

(
N∑
j=1

(aijxj)
2 + 2

N∑
l=1

N∑
m=1

aljamjxlxm

)

=
N∑
j=1

E(a2ij)x2j + 2
N∑
l=1

N∑
m=1

E(alj)E(amj)xlxm =
1

m
‖x‖22 ,

and hence E(‖Ax‖22) = E (
∑m

i=1 c
2
i ) =

∑m
i=1 E(c2i ) = ‖x‖

2
2.

Since ‖Ax‖22 is proportional to ‖x‖22, it is sufficient to demonstrate the concentration

for arbitrary unit vectors. For all fixed unit vectors x ∈ RN ,

P
(
‖Ax‖22 > 1 + ε

)
= P

(
et‖Ax‖22 > et(1+ε)

)
(6)

< E
(
et‖Ax‖22

)
e−t(1+ε), (7)
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where (6) and (7) simply apply the Chernoff technique for t > 0. Now, because the

columns ci are i.i.d. we have E
(
et‖Ax‖22

)
= E

(
et

∑m
i=1 c

2
i

)
=
(
E
(
etc

2
1

))m
, leading to

P
(
‖Ax‖22 > 1 + ε

)
<
(
E
(
etc

2
1

))m
e−t(1+ε) (8)

≤ (1− 2t/m)−m/2e−t(1+ε), (9)

where (9) follows from Lemma 1. Optimizing this bound with respect to t, t∗ = mε
2(1+ε)

,

we can write

P
(
‖Ax‖22 > 1 + ε

)
< ((1 + ε)e−ε)m/2 (10)

< e−m(ε2/4−ε2/6), (11)

where the last inequality comes from truncating the Taylor approximation of (10). Sim-

ilarly, for the other bound,

P
(
‖Ax‖22 < 1− ε

)
<
(
E
(
e−tc

2
1

))m
et(1−ε) (12)

<
(
E
(
1− tc21 + t2c41/2

))m
et(1−ε) (13)

≤
(
1− t

m
+

3t2

2m2

)m
et(1−ε) (14)

=

(
1− ε

2(1 + ε)
+

3ε2

8(1 + ε)2

)m
e
mε(1−ε)
2(1+ε) (15)

< e−m(ε2/4−ε3/6), (16)

where (13) and (16) is a Taylor approximation, (14) uses the fact E(c41) = 1
m2 ≤ 3

m2 and

(15) plugs in the earlier value of t∗.

Lemma 1. Form ≥ 1 and all x ∈ RN s.t. ‖x‖22 = 1, E
(
etc

2
1

)
≤ (1− 2t/m), ∀t ∈ [0,m/2].
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Proof. Let W ∼ N (0, 1
m
), then

E
(
etc

2
1

)
=
∞∑
i=1

ti

i!
E
(
c2i1
)

(17)

≤
∞∑
i=1

ti

i!
E
(
W 2i

)
(18)

=E
(
etW

2
)

(19)

=(1− 2t/m)−1/2. (20)

Observe that for t ∈ [0,m/2] the expectations in (17) and (19) are bounded, allowing

to push the expectation inside the limiting sums in (17) and (18). Inequality in (18)

holds since E(c2i1 ) = m−i ≤ E (W 2i) = m−i (2i)!
i!2i

holds for each i = 0, 1, 2, . . ..

Given the concentration of ‖Ax‖22 around its mean, RIP follows from Lemma 5.1 in

Baraniuk et al. [2008], which is adapted and reiterated below for completeness.

Lemma 2. Let a random matrix A ∈ Rm×N satisfy the concentration inequality in (5). Then,

for any set T with q = #(T ) < m and any 0 < δ < 1, we have

Pr
(
(1− δ) ‖x‖22 ≤ ‖Ax‖

2
2 ≤ (1 + δ) ‖x‖22

)
≥ 1− 2(12/δ)qe−(δ/2)m(ε2/4−ε3/6)

Proof. See Lemma 5.1 in Baraniuk et al. [2008].
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A.3 Additional experiments for k = 1, 3, 4, 5
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Figure A.2: Additional experiments for N = 100 and k = 1, 3.
Rows represent RMSE, sensitivity and specificity (top to bottom), columns correspond to
k = 1 and k = 3 (left to right) infected individuals in population of N = 100. The proposed

approach is second-best for k = 1 and the best for k = 3.
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Figure A.3: Additional experiments for N = 100 and k = 4, 5.
Rows represent RMSE, sensitivity and specificity (top to bottom), columns correspond to
k = 4 and k = 5 (left to right) infected individuals in population of N = 100. The proposed

approach retains its desirable properties.
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A.4 Comparison with Tapestry (Ghosh et al. [2020])
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Figure A.4: RMSE comparison for N = 60, k = 1, 2, 3, 4, 5, 6.
The proposed SR method dominates Tapestry (Ghosh et al. [2020]) for k = 1, 2, 3, 4, but

seems to be less precise for k = 5, 6.
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