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Abstract
Unstable environments raise challenges for constructing a financial portfolio. In such scenarios, it is
unrealistic to assume constant portfolio weights, whereas estimating weights using only post-break
observations omits the information prior to the break point. This paper visualizes stock returns
as a network of interacting entities and generalizes network inference in the presence of structural
breaks. We estimate time-varying portfolio weights using pre- and post-break data when the stock
returns are driven by common factors. Using the example of a strong structural break caused by the
first wave of COVID-19 pandemic, we demonstrate that combining pre- and post-break observations
for estimating portfolio weights improves portfolio return and Sharpe Ratio compared to constant
weights and weights that use only post-break observations.
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1. Introduction

Precision matrix represents a network of interacting entities, such as corporations or genes.
When the data is Gaussian, the sparsity in the precision matrix encodes the conditional
independence graph - two variables are conditionally independent given the rest if and
only if the entry corresponding to these variables in the precision matrix is equal to zero.
Inferring the network is important for portfolio allocation problem. At the same time,
the financial network changes over time, that is, the relationships between companies can
change either smoothly, or abruptly (e.g. as a response to an unexpected policy shock, or in
the times of economic downturns). Therefore, it is important to account for time-varying
nature of stock returns.

There are two streams of literature that study time-varying networks. The first one
models dynamics in the precision matrix locally. Zhou et al. [2010] develop a nonpara-
metric method for estimating time-varying graphical structure for multivariate Gaussian
distributions using an ℓ1-penalized log-likelihood. They find out that if the covariances
change smoothly over time, the covariance matrix can be estimated well in terms of pre-
dictive risk even in high-dimensional problems. Lu et al. [2015] introduce nonparanormal
graphical models that allow to model high-dimensional heavy-tailed systems and the evo-
lution of their network structure. They show that the estimator consistently estimates the
latent inverse Pearson correlation matrix. The second stream of literature allows the net-
work to vary with time by introducing two different frequencies. Hallac et al. [2017] study
time-varying Graphical Lasso with smoothing evolutionary penalty.

In this paper we tackle two aspects of structural estimation of complex systems: (1) the
presence of common factors in financial asset returns, and (2) the dynamical nature of a
financial system that evolves in time due to structural breaks. In Lee and Seregina [2020]
we showed the importance of incorporating the first aspect into graphical modeling. This
paper argues that portfolio performance can be further improved when the second aspect
is added. Our work provides a unified framework to generalize network inference in the
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presence of structural breaks. We propose to estimate time-varying precision matrix for
portfolio optimization problem using pre- and post-break data when the stock returns are
driven by common factors. Alternating direction method of multipliers (ADMM) is used
to derive a closed-form solution for precision matrix. We use the example of a strong
structural break caused by the first wave of COVID-19 pandemic and demonstrate that
our estimator improves portfolio return and Sharpe Ratio compared to a constant precision
matrix estimator and an estimator that uses only post-break observations.

2. Time-Varying Portfolio Using Graphical Methods

Suppose we observe p assets over T period of time. Let rt = (r1t, r2t, . . . , rpt)
′ ∼

D(m,Σ) be a p × 1 vector of stock returns drawn from a distribution D, where m and
Σ are the unconditional mean and covariance matrix of the returns.

Let daily stock returns follow a K-factor model:

rt = α+Bft + εt, t = 1, . . . , T, (1)

where ft = (f1t, . . . , fKt)
′ are the factors, B is a p ×K matrix of factor loadings, and εt

is the idiosyncratic component that cannot be explained by the common factors.
We model the change in precision matrix due to N known structural breaks. Define

ni ≡ ti − ti−1 to be the sample between the i-th and (i − 1)-th break points, where
i = 1, . . . , N ,

∑N
i=1 ni = T , N ≤ T .

We propose that the dynamics of the system evolves through the precision matrix of
the idiosyncratic component. Let Σε,i, Σf , and Σi be covariance matrices of idiosyncratic
part, factors and stock returns in regime i. Define the corresponding precision matrices to
be Θε,i ≡ Σ−1

ε,i , Θf ≡ Σ−1
f , and Θi ≡ Σ−1

i .
Unknown factors, loadings and the constant term are estimated using PCA in a standard

way (Stock and Watson [2002]), and the estimators are denoted f̂t, B̂, and α̂. Given a sam-
ple of the estimated factors {f̂t}Tt=1, let Σ̂f = (1/T )

∑T
t=1 f̂tf̂

′
t be the sample counterpart

of the covariance matrix and Θ̂f = Σ̂−1
f . Also, we can obtain ε̂t = rt − α̂ − B̂f̂t. To

model dynamics in Θε,i we use the following optimization problem:

Θ̂ε,i = arg min
Θε,i≻0

N∑
i=1

ni

[
trace

(
Σ̂ε,iΘε,i

)
− log detΘε,i

]
+ λ∥Θε,i∥od,1 (2)

+ β

N∑
i=2

ψ(Θε,i −Θε,i−1).

where Σ̂ε,i =
1
ni

∑ni
k=1 ε̂i,kε̂

′
i,k and ∥Θε,i∥od,1 =

∑
l ̸=q|Θlq,ε,i| where Θlq,ε,i is the lq-th

element of matrix Θε,i. The optimization problem in (2) has two tuning parameters: λ,
which determines the sparsity level of the network, and β, which controls the strength of
resemblance between two neighboring precision estimators. In the empirical exercise we
use the first 2/3 of the training data to estimate portfolio weights and jointly tune λ and β
in the remaining 1/3 to yield the highest Sharpe Ratio. The smoothing function ψ(·) in (2)
can be Lasso (ψ =

∑
l,q|·|), Group Lasso (ψ =

∑
q∥·q∥2), Laplacian (ψ =

∑
l,q(·lq)2),

Max norm penalty (ψ =
∑

q maxl|·lq|).
To estimate (2) we use the ADMM algorithm. Once Θε,i is estimated, we combine

estimated factors, loadings and precision matrix of the idiosyncratic components using
Sherman-Morrison-Woodbury formula to estimate the final precision matrix of excess re-
turns:

Θ̂i = Θ̂ε,i − Θ̂ε,iB̂[Θ̂f + B̂′Θ̂ε,iB̂]−1B̂′Θ̂ε,i. (3)
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We can use precision matrix estimated using (3) to compute optimal portfolio weights
ŵi = f(Θ̂i). Possible choice for f(Θi) is a global minimum-variance portfolio (GMV,
f(Θi) = (ι′Θiι)

−1Θiι), where ι is a p × 1 vector of ones. We call the aforementioned
procedure Time-Varying Factor Graphical Lasso (TVFGL) and summarize it in Algorithm
1.

Algorithm 1
1: (FM) Estimate f̂t and B̂t in (1). Get Σ̂f , Θ̂f and ε̂t = B̂f̂t − rt.
2: (TVGL) Solve (2) using ADMM to get Θ̂ε,i.
3: (TVFGL) Use Θ̂ε,i, Θ̂f and B̂ from Steps 1-2 to get Θ̂i in Equation (3).
4: Use Θ̂i to get portfolio weights ŵi = f(Θ̂i).

3. Empirical Application

The full sample of the time-series of the daily returns has 1,089 observations on 500 compo-
nents of the S&P500 and runs from January 3, 2017 to April 30, 2021. Using the behavior
of the composite S&P500 Index, we identified February 10, 2020 as a break point. The
training sample consists of 1,007 observations and runs from January 3, 2017 to Decem-
ber 31, 2020. This leaves 82 observations for the test sample which runs from January 1,
2021 to April 30, 2021. The following competing methods are considered: constant pre-
cision matrix estimated using FGL ( Lee and Seregina [2020]); FGL-postbreak that uses
only post-break observations; and TVFGL which accounts for the break. Table 1 reports
the out-of-sample (OOS) portfolio mean return, standard deviation (risk), and the Sharpe
Ratio.

Table 1: Daily portfolio returns, risk and Sharpe ratio.
GMV

Mean Risk Sharpe Ratio
FGL 0.0006 0.0056 0.1155

FGL-postbreak 0.0009 0.0062 0.1390
TVFGL 0.0019 0.0133 0.1441

As evidenced by the results in Table 1, accounting for the break improves the OOS
Sharpe Ratio and return of the GMV portfolio.

4. Summary

Dynamic nature of the financial system requires an approach to estimate time-varying port-
folio weights. This paper addresses this issue by focusing on a precision matrix, the main
object used for estimating portfolio weights. We visualize stock returns as a network of
interacting entities and generalize network inference in the presence of structural breaks.
We estimate time-varying portfolio weights using pre- and post-break data when the stock
returns are driven by common factors. Using the example of a strong structural break
caused by the first wave of COVID-19 pandemic, we demonstrate that combining pre- and
post-break observations improves portfolio return and Sharpe Ratio compared to constant
weights and weights that use only post-break observations.
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