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1. Motivation
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“The people closest to you hearing that you study Economics might
say “What stock should I invest in?” ”
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Markowitz Mean-Variance Optimization

I Agent: Suppose you are an investor with some savings
which you would like to invest in the financial market.

I We observe i = 1, . . . , p excess returns over t = 1, . . . ,T
period of time: rt = (r1t, . . . , rpt)

′ ∼ D(m,Σ), where D is
sub-Gaussian or Elliptical.

I Want: To find the optimal portfolio, w′rt.
I May be subject to the constraints on

(i) a desired expected return, µ = E[w′rt];
(ii) maximum risk, σ =

√
Var(w′rt);

(iii) weights sum up to one, w′rt = 1.
I Need: To estimate:

(i) expected returns, m;
(ii) inverse covariance (precision) matrix, Θ ≡ Σ−1.
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Large Portfolio Optimization: Challenges

I Break down the search for the optimal weights:
1. Which stocks to buy?

Ô Buy all stocks – non-sparse portfolio;
Ô Buy a subset of all stocks – sparse portfolio

2. How much to invest in these stocks?
I Many stocks available for investing:

S&P500; NASDAQ (> 3, 000); Russell (> 1, 000)
I Challenges of optimizing over a large number of assets:

(i) Consistent estimation of portfolio weights and exposure
when p = pT →∞ as T →∞ and/or p > T;

(ii) Using sample covariance matrix as an estimator of
Θ = Σ−1 is not feasible;

(iii) Easy to monitor, low rebalancing costs, and robust
performance during recessions.
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Large Portfolio Optimization: Challenges
I Break down the search for the optimal weights:

1. Which stocks to buy?
Ô Buy all stocks – non-sparse portfolio;
Ô Buy a subset of all stocks – sparse portfolio

2. How much to invest in these stocks?
I Many stocks available for investing:

S&P500; NASDAQ (> 3, 000); Russell (> 1, 000)
I Challenges of optimizing over a large number of assets:

(i) Consistent estimation of portfolio weights and exposure
when p = pT →∞ as T →∞ and/or p > T;

(ii) Using sample covariance matrix as an estimator of
Θ = Σ−1 is not feasible;

(iii) Easy to monitor, low rebalancing costs, and robust
performance during recessions.

Agenda of the Existing Research on HD Portfolio Optimization:
find an improved estimator of the inverse covariance matrix.
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Non-Sparse Portfolios

1. Covariance Matrix Estimators: develop an improved
estimator of the sample covariance matrix.
I Shrinking eigenvalues of sample covariance matrix (Ledoit

& Wolf, JMA 2004; RFS 2017)
I Estimate covariance matrix under factor structure assuming

spiked covariance model (Fan et al., AoS 2011; JRSSB 2013;
AoS 2016)

2. Precision Matrix Estimators: no need to estimate
covariance, obtain an improved estimator of inverse
covariance matrix directly.
I Estimate the elements of precision matrix column by

column – nodewise regression (Meinshausen and
Bühlmann, AoS 2006)

I Constrained `1-minimization for inverse matrix estimation
– CLIME (Cai et al., JASA 2011)
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COVID-19 outbreak

Daily returns of 495 components of the S&P500 from May 25, 2018 – September 24,
2020 (588 obs.): training period is May 25, 2018 – October 23, 2018 (105 obs.), OOS
period is October 24, 2018 – September 24, 2020 (483 obs.). Rollingwindoww/monthly
rebalancing.

Total OOS Performance
10/24/19–09/24/20

Before the Pandemic
01/02/19–12/31/19

During the Pandemic
01/02/20–06/30/20

Return
(×100)

Risk
(×100)

Sharpe Ratio CER
(×100)

Risk
(×100)

CER
(×100)

Risk
(×100)

EW 0.0108 1.8781 0.0058 28.5420 0.8010 -19.7207 3.3169
Index 0.0351 1.7064 0.0206 27.8629 0.7868 -9.0802 2.9272

Nodewise Regr’n 0.0322 1.6384 0.0196 29.6292 0.6856 -11.7431 2.8939
CLIME 0.0793 3.1279 0.0373 31.5294 1.0215 -25.3004 3.8972

LW 0.0317 1.7190 0.0184 29.5513 0.7924 -14.9328 3.0115

Table 1: Performance of non-sparse portfolios.
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Let us Review Some Stylized Facts
Source: Tidmore et al. (The Journal of Investing, 2019)

Data: active US equity funds’ quarterly data from January 2000 to
December 2017 from Morningstar, Inc.
Goal: study the impact of the number of stock holdings on fund
excess returns.

Additional Evidence
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Sparse Portfolios

Hypothesis: holding sparse portfolios is the key to hedging
risk during recessions
Previous Studies on Sparse Allocations (Brodie et al., PNAS
2009; Li, JBES 2015):
I Limited to low-dimensional setup (number of stocks ≤ 100)
I Lack theoretical guarantees of resulting sparse wealth allocations
I Are suboptimal due to the bias induced by the sparse penalty

“The Law of the Few (80/20 Principle) poses that in any situation roughly 80% of the
’work’ will be done by 20% of the participants.”

M. Gladwell (The Tipping Point: How Little Things Can Make a Big Difference, 2000)
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This Paper

Develop a methodology to
construct sparse portfolio in high dimensions for several
different portfolio formulations:

Step 1: Reformulate standard constrained Markowitz
optimization problem as an unconstrained regression
problem
Step 2: Apply Lasso penalty to induce sparsity in wealth
allocations + correct for the bias
Step 3: Graphical Model + Factor Structure = Factor
Graphical model→ precision matrix estimator under the
factor model for HD portfolio allocation
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Summary of Contributions

Theoretical Contributions:
I Establish the oracle bounds of sparse weight estimators,

portfolio exposure and precision matrix estimator;
I Provide guidance regarding the distribution of portfolio

weights
Empirical Contributions:
I Examine the merit of sparse portfolios during different

market scenarios;
I Demonstrate that our strategy can be used as a hedging

vehicle during economic downturns;
I Identify industries that serve as “safe havens” during

recessions
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COVID-19 outbreak

Daily returns of 495 components of the S&P500 from May 25, 2018 – September 24,
2020 (588 obs.): training period is May 25, 2018 – October 23, 2018 (105 obs.), OOS
period is October 24, 2018 – September 24, 2020 (483 obs.). Rollingwindoww/monthly
rebalancing.

Total OOS Performance
10/24/19–09/24/20

Before the Pandemic
01/02/19–12/31/19

During the Pandemic
01/02/20–06/30/20

Return
(×100)

Risk
(×100)

Sharpe Ratio CER
(×100)

Risk
(×100)

CER
(×100)

Risk
(×100)

EW 0.0108 1.8781 0.0058 28.5420 0.8010 -19.7207 3.3169
Index 0.0351 1.7064 0.0206 27.8629 0.7868 -9.0802 2.9272

Nodewise Regr’n 0.0322 1.6384 0.0196 29.6292 0.6856 -11.7431 2.8939
CLIME 0.0793 3.1279 0.0373 31.5294 1.0215 -25.3004 3.8972

LW 0.0317 1.7190 0.0184 29.5513 0.7924 -14.9328 3.0115
Our Post-Lasso-based 0.1247 1.7254 0.0723 45.2686 1.0386 12.4196 2.8554

Our De-biased Estimator 0.0275 0.5231 0.0526 23.7629 0.4972 6.5813 0.5572

Table 2: Performance of non-sparse and sparse portfolios.

Selected Stocks
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2. Sparse Portfolios
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Markowitz Risk-Constrained Problem (MRC)
Optimal portfolio achieves
a desired expected return,
µ, with minimum variance:min

w

1
2
w′Σw

s.t. m′w ≥ µ
(1)

Optimal portfolio maximizes ex-
pected return given a maximum
risk-tolerance level, σ:{

max
w

w′m

s.t. w′Σw ≤ σ2
(2)

max
w

m′w√
w′Σw

s.t. m′w ≥ µ or w′Σw ≤ σ2 (3)

I Let µ = σ
√
m′Θm:
wMRC =

σ√
m′Θm

Θm =
σ√
θ
Θm, (4)

where θ ≡ m′Θm is the square of the maximum Sharpe ratio.
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How to Induce Sparsity?
Consider any linear regression model:

y︸︷︷︸
T×1

= X︸︷︷︸
T×p

β︸︷︷︸
p×1

+ ε (5)

To solve for β we minimize residual sum of squares:

β = argmin
β

E
[
yt − β′xt

]2 (6)

Sample counterpart: β̂ = argminβ
∑T

t=1(yt − β′xt)
2

To make it sparse we penalize elements of β with small weights:

β̂Sparse = argmin
β

T∑
t=1

(yt − β′xt)
2 + 2λ

p∑
j=1

∣∣βj
∣∣ (7)

When λ = 0→ β is NOT sparse, when λ =∞→ no element of
β is selected.
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CanWe Apply Similar Idea to Find Sparse Portfolios?

Recall portfolio weight expression obtained from constrained
Markowitz optimization problem (MRC):

wMRC =
σ√

m′Θm
Θm =

σ√
θ
Θm, (8)

Question: can we obtain the same weight as in (8) using linear
regression?

y︸︷︷︸
T×1

= X︸︷︷︸
T×p

wMRC︸ ︷︷ ︸
p×1

+ ε (9)

wMRC = argmin
w

E
[
yt −w′xt

]2 ?
=
σ√
θ
Θm (10)

Answer: YES, we just have to determine yt and xt such that the
second equality in (10) holds.
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This Paper

Develop a methodology to construct sparse portfolio in high
dimensions for several different portfolio formulations:

Step 1: Reformulate standard constrained Markowitz
optimization problem as an unconstrained regression
problem
Step 2: Apply Lasso penalty to induce sparsity in wealth
allocations + correct for the bias
Step 3: Graphical Model + Factor Structure = Factor
Graphical model→ precision matrix estimator under the
factor model for HD portfolio allocation
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Sparse Portfolio

I Define
yt = y ≡ σ1 + θ√

θ
, where θ = m′Θm (11)

I If yt is determined by equation (11) and xt = rt, the
solution to the following unconstrained regression
problem yields MRC portfolio weights:

wMRC = argmin
w

E
[
y −w′rt

]2
=

σ√
θ
Θm (12)

Let R be a T × p matrix of excess returns and y be a T × 1
constant vector. Consider a high-dimensional linear model

y = Rw + e, where e ∼ D(0, σ2
e I).

Proof
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This Paper
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Sparse Portfolio

I To get sparse weights we impose standard LASSO (`1)
penalty which yields the following unconstrained
optimization problem:

ŵMRC,SPARSE ≡ ŵ = argmin
w

1
T

T∑
t=1

(y −w′rt)
2 + 2λ

p∑
j=1

∣∣wj
∣∣ (13)

I Tuning parameter λ: we use the first 2/3 of the training
data (training window) to estimate weights and tune the
shrinkage intensity λ in the remaining 1/3 of the training
sample to yield the highest Sharpe Ratio (validation
window).
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Sparse Portfolio
I To get sparse weights we impose standard LASSO (`1)

penalty which yields the following unconstrained
optimization problem:

ŵMRC,SPARSE ≡ ŵ = argmin
w

1
T

T∑
t=1

(y −w′rt)
2 + 2λ

p∑
j=1

∣∣wj
∣∣ (14)

yt = y ≡ σ1 + θ√
θ
, where θ = m′Θm

I Problems: (a) the estimator in (14) is biased and
(b) y needs to be estimated.

I Solutions: (a) use de-biasing (van de Geer et al., AoS 2014,
Belloni et al., Biometrika 2015, Javanmard et al., AoS 2018).

I For now, suppose we have a consistent estimator of y,
denoted as ŷ.
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Sparse De-Biased Portfolio

(FOC): − R′(ŷ − Rŵ)/T + λĝ = 0,

Let Σ̂ = R′R/T, then we can rewrite the FOC conditions:

Σ̂(ŵ −w) + λĝ = R′e/T. (15)

Multiply both sides of (15) by Θ̂, add and subtract (ŵ −w):

ŵ −w + Θ̂λĝ = Θ̂R′e/T −
√

T(Θ̂Σ̂− Ip)(ŵ −w)︸ ︷︷ ︸
∆

/
√

T (16)

ŵ = w − Θ̂λĝ (17)

ŵMRC,DEBIASED = ŵ + Θ̂λĝ = ŵ + Θ̂R′(ŷ − Rŵ)/T, (18)

ĝ is a p× 1 vector arising from the subgradient of
∑p

j=1
∣∣wj
∣∣.
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Alternative Portfolio Formulations: Problem

I What happens when in addition to target return and risk
constraints we require portfolio weights sum up to one?

max
w

m′w√
w′Σw

s.t. m′w ≥ µ or w′Σw ≤ σ2,w′ι = 1 (19)

Why not add weight constraint to (19)?
I (19) has two solutions, when ι′Θm < 0 the maximum

value cannot be achieved exactly (Maller & Turkington,
2003).
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Alternative Portfolio Formulations: Solution

min
w

w′Σw, s.t. m′w ≥ µ, w′ι = 1 (20)

Global Minimum-Variance
(GMV): if m′w > µ

wGMV = (ι′Θι)−1Θι

Markowitz Weight-Constrained
(MWC): if m′w = µ

wMWC = (1− a1)wGMV + a1wM,

wM = (ι′Θm)−1Θm,

a1 =
µ(m′Θι)(ι′Θι)− (m′Θι)2

(m′Θm)(ι′Θι)− (m′Θι)2 ,
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Algorithm 1 Sparse Portfolio Using Post-Lasso

1: Use Lasso regression in (13):

ŵ = argmin
w

1
T

T∑
t=1

(ŷ −w′rt)
2 + 2λ‖w‖1

to select the model Ξ̂ ≡ support(ŵ).
I The corresponding selected model is denoted as

Ξ̂(t) ≡ support(ŵ(t)).

2: Choose a desired portfolio formulation (MRC, MWC, GMV) and
apply it to the selected subset of stocks Ξ̂(t).
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How to get consistent estimator of y?

I Recall, θ = m′Θm, where Θ = Σ−1 is precision matrix, and

y ≡ σ1 + θ√
θ

I If m̂ is the sample mean, then
‖m̂−m‖max = Op(

√
log(p)/T) (Chang et. al., 2018)

I We need a consistent estimator of HD precision matrix Θ.
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3. Factor Graphical Model
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Existing Approaches to Estimate HD Precision Matrix

1. Graphical Models: estimate precision matrix directly (no
need to obtain covariance matrix)

I Consistent estimation of sparse HD precision:
Meinshausen & Buhlmann (Nodewise regression, AoS
2006), Friedman et al. (Graphical Lasso, Biostatistics 2008),
Cai et al. (CLIME, JASA 2011)
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I Absence of an edge between two vertices: conditionally
independent given the rest.

I Graphical models aim at predicting agents’ behavior by
examining the web of relationships in which they are embedded.
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Figure 5: Stocks selected by Post-Lasso in May, 2020
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Partial correlation networks of S&P500 sectors in 2019(left) & 2020(right).
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Existing Approaches to Estimate HD Precision Matrix

1. Graphical Models: estimate precision matrix directly (no
need to obtain covariance matrix)

I Consistent estimation of sparse HD precision:
Meinshausen & Bühlmann (Nodewise regression, AoS
2006), Friedman et al. (Graphical Lasso, Biostatistics 2008),
Cai et al. (CLIME, JASA 2011)

Strong sparsity assumption on precision matrix
When stock returns are driven by common factors, the sparsity
assumption imposed by Graphical Models is too strong.
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Do Stock Returns Exhibit the Factor Structure?

Figure 1A: Eigenvalues of the sample correlation matrix of S&P500 Index constituents
daily returns during 2015–2020 (left) and the returns simulated using # factors≡ K = 2
(right). [Similar pattern indicative of the factor structure was documented for S&P100
by Ding et al., JoE 2020].
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Partial Correlations Under the Factor Structure

Figure 2A: Heatmap and histogram of sample partial correlations estimated using the
sample correlation matrix: T = 1000, p = 50, K = 2.
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Graphical Models Under the Factor Structure

Figure 3A: Heatmap and histogram of sample partial correlations estimated using
Graphical Lasso with no factors: T = 1000, p = 50, K = 2.
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Existing Approaches to Estimate HD Precision Matrix

2. Factor Models:

rt︸︷︷︸
p×1

= B ft︸︷︷︸
K×1

+ εt, t = 1, . . . ,T (21)

I ft = (f1t, . . . , fKt)
′ are the factors

I B is a p× K matrix of factor loadings
I εt is the idiosyncratic component

1. Estimate covariance matrix using factor structure
2. Invert it to obtain precision matrix
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This Paper

Develop a methodology to construct sparse portfolio in high
dimensions for several different portfolio formulations:

Step 1: Reformulate standard constrained Markowitz
optimization problem as an unconstrained regression
problem
Step 2: Apply `1 penalty to induce sparsity in wealth
allocations + correct for the bias
Step 3: Graphical Model + Factor Structure = Factor
Graphical model→ precision matrix estimator under the
factor model for HD portfolio allocation
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How to Use Graphical Models Under the Factor Structure?

rt︸︷︷︸
p×1

= B ft︸︷︷︸
K×1

+ εt, t = 1, . . . ,T

R︸︷︷︸
p×T

= B︸︷︷︸
p×K

F + E. (22)

Challenge: When factors are present, the precision matrix of
returns cannot be sparse.

Σε = T−1EE′; Θε = Σ−1
ε ,

Σf = T−1FF′; Θf = Σ−1
f ,

cov(rt) = Σ = BΣfB′ + Σε; Θ = Σ−1.
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Factor Nodewise Regression (FMB)

Solution:

Σ̂ε = T−1ÊÊ′; Θ̂ε ←MB,

Σ̂f = T−1F̂F̂′; Θ̂f = Σ̂−1
f ,

Use the Sherman-Morrison-Woodbury (SMW) formula to
estimate the precision of excess returns:

FMB→ Θ̂ = Θ̂ε︸︷︷︸
MB

− Θ̂εB̂[ Θ̂f︸︷︷︸
FM

+ B̂′Θ̂εB̂]−1 B̂′︸︷︷︸
FM

Θ̂ε (23)

Sketch of the FMB Algorithm (CRAN (beta version))
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Partial Correlations Under the Factor Structure

Figure 2A: Heatmap and histogram of sample partial correlations estimated using the
sample correlation matrix: T = 1000, p = 50, K = 2.
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Factor Graphical Models Under the Factor Structure

Figure 4A: Heatmap and histogram of sample partial correlations estimated using FGL
with 1 estimated factor: T = 1000, p = 50, K = 2.
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Factor Graphical Models Under the Factor Structure

Figure 5A: Heatmap and histogram of sample partial correlations estimated using FGL
with 2 estimated factors: T = 1000, p = 50, K = 2.
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Factor Graphical Models Under the Factor Structure

Figure 6A: Heatmap and histogram of sample partial correlations estimated using FGL
with 3 estimated factors: T = 1000, p = 50, K = 2.
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Theoretical Contributions: Summary

1. Establish consistency of HD precision estimator, Θ̂, using
FMB:

Θ̂ = Θ̂ε − Θ̂εB̂[Θ̂f + B̂′Θ̂εB̂]−1B̂′Θ̂ε. (Theorem 3)

2. Use Θ̂, de-biasing and post-lasso to establish consistency
of sparse ŵξ, ξ = {GMV, MWC, MRC} and their
distribution. (Theorems 4,5)

3. Use Σ̂ = Θ̂−1 and ŵξ to establish the bounds on portfolio
exposure ŵ′ξΣ̂ŵξ. (Theorem 6)

Elliptical distributions: Theorems 3-6 continue to hold. !
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4. Empirical Application
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Data
I Data: CRSP and Compustat, monthly returns of the

components of the S&P500:
I Full sample: 480 observations on 355 stocks from January 1,

1980 - December 31, 2019.
I Training: January 1, 1980 - December 31, 1994 (180 obs).
I Test: January 1, 1995 - December 31, 2019 (300 obs).
I Monthly rebalancing.
I The composite index is reported as ∧GSPC.

I Factors: Fama-French factors (FF), statistical factors (PC):
I FF1 = excess return on the market; FF3 = FF1 + Size Factor

(SMB) + Value Factor (HML); FF5 = FF3 + Profitability
Factor (RMW) + Risk Factor (CMA)

I Targets:
(return target, risk target) = (µ, σ) = (0.7974%, 0.05).
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Finding # 1: Non-sparse portfolios produced large negative CER during
the Global Fin. crisis 2007-09.

Asian & Rus.
Fin. Crisis

(1997-1998)

Argen. Great Depr.
& dot-com bubble

(1999-2002)

Fin. Crisis
(2007-2009)

CER Risk CER Risk CER Risk

EW 0.2712 0.0547 -0.0322 0.0519 -0.4987 0.1203
Index 0.3222 0.0508 -0.1698 0.0539 -0.4924 0.0929

Markowitz Risk-Constrained (MRC)

MB 2.1662 0.3381 -0.1140 0.2916 -3.0688 0.5101
CLIME 1.3285 0.0892 0.4241 0.1297 -3.0470 0.4735
LW 0.9134 0.1021 0.3677 0.1412 -0.3196 0.3751
FMB (PC) 1.3153 0.0883 0.5016 0.1286 -0.1312 0.1219
FMB (FF1) 2.0379 0.3029 0.0861 0.2660 -2.7247 0.4301

Global Minimum-Variance Portfolio (GMV)

MB 0.2791 0.0496 -0.0470 0.0476 -0.4637 0.1015
CLIME 0.3960 0.0374 -0.1224 0.0510 -0.4588 0.0987
LW 0.3127 0.0415 -0.0952 0.0483 -0.4013 0.0693
FMB (PC) 0.4117 0.0364 -0.1227 0.0505 -0.3444 0.0393
FMB (FF1) 0.2784 0.0487 -0.0396 0.0468 -0.4570 0.0986
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Finding # 2: Sparse portfolios produce positive CER during the Global
Fin. crisis 2007-09.

Asian & Rus.
Fin. Crisis

(1997-1998)

Argen. Great Depr.
& dot-com bubble

(1999-2002)

Fin. Crisis
(2007-2009)

CER Risk CER Risk CER Risk

EW 0.2712 0.0547 -0.0322 0.0519 -0.4987 0.1203
Index 0.3222 0.0508 -0.1698 0.0539 -0.4924 0.0929

Debiased MRC

DL(PC) 0.2962 0.0261 0.1567 0.0217 0.1129 0.0408
DL(FF1) 0.4149 0.0277 0.1681 0.0240 -0.0258 0.0230
DL(FF3) 0.2123 0.0142 0.1782 0.0186 -0.0406 0.0202

Post-Lasso MRC

PL(PC) 3.0881 0.2211 1.7153 0.1281 2.6131 0.1862
PL(FF1) 2.3433 0.1568 1.4470 0.1828 2.8639 0.2404
PL(FF3) 0.6691 0.1887 -0.1561 0.1799 -0.9998 0.1410

Post-Lasso GMV

PL(PC) 0.4403 0.0593 0.8150 0.0955 -0.3694 0.1243
PL(FF1) 0.3385 0.0616 0.8151 0.0877 -0.5545 0.1213
PL(FF3) 0.0711 0.0713 0.1458 0.1061 0.0295 0.0694
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Partial Correlation Network of S&P500 Sub Industries in 2005 (left)
and in 2008 (right).

Finding # 3: The market fear in the crisis broke the connections of stock
sectors and sub industries.
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5. Conclusions
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Conclusions

Methodological Contributions:
I Develop a framework to construct sparse portfolio in high

dimensions for several different portfolio formulations
Theoretical Contributions:
I Establish the oracle bounds of sparse weight estimators,

portfolio exposure and precision matrix estimator;
I Provide guidance regarding the distribution of portfolio

weights
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Conclusions

Empirical Contributions:
I Examine the merit of sparse portfolios during different

market scenarios;
I Demonstrate that our strategy can be used as a hedging

vehicle during economic downturns
I Identify industries that could serve as safe havens during

recessions:
Ô Return-drivers during GFC and COVID-19 outbreak:

consumer staples, healthcare, retail and food;
Ô Least attractive investment: insurance sector
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Future Work

I Stocks and taxes: the effect of Biden’s tax proposals?
“Behavioral responses” to changes in capital gains taxes:
higher capital gains tax⇒ discourage capital gains
realizations⇒ investors will likely respond by holding
onto stocks rather than selling⇒ less efficient market.

I How to select mutual funds from the stocks they hold?
I Robo-Advisor using Reinforcement Learning
I Time-Varying Networks using autoregression to

incorporate the past information (derive closed-form
solutions for the ADMM subproblems to further speed up
the runtime).
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6. Appendix
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minw −U ≡ γ

2
w′Σw −w′m, s.t. w′ι = 1, |supp(w)| ≤ p̄, p̄ ≤ p

Monthly data on the constituents of the S&P100: set γ = 3,
p̄ = {5, 10, . . . , 90} (Lagrangian relaxation procedure). If p̄ < p →USparse, if
p̄ = p →UNon-Sparse :

Figure 7A: UNon-Sparse/USparse as a function of p̄ averaged over the test window.
Go back
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Proof of (12)

E
[
y −w′rt

]2
= y2 + w′Σw + (w′m)2 − 2yw′m

F.O.C. wΣ + (w′m)m− ym = 0

Left multiply both parts by m′Θ:

w′m + (w′m) ·m′Θm− y ·m′Θm = 0, (24)

Recall, θ = m′Θm,

w′m =
θ

1 + θ
y = ζ, (25)

Combine (24) and (25):

w =
ζ

θ
Θm, if y = σ

1 + θ√
θ
, and µ = σ

√
m′Θm (26)

wMRC = argmin
w

E
[
y −w′rt

]2
=

σ√
θ
Θm (27)

Go back
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Figure 4: Stocks selected by Post-Lasso in August, 2019



58 / 72

Motivation Sparse Portfolios Factor Graphical Model Application Conclusions Appendix Asymptotic Theory

Figure 5: Stocks selected by Post-Lasso in May, 2020
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Using MB to Estimate Θε

I Let ε̂j be a T × 1 vector of estimated residuals for the j-th
regressor.

I The remaining covariates are collected in a T × (p− 1)

matrix Ê−j.
For each j = 1, . . . , p we run the following Lasso regressions:

γ̂j = arg min
γ∈Rp−1

(∥∥∥ε̂j − Ê−jγ
∥∥∥2

2
/T + 2λj‖γ‖1

)
, (28)

where γ̂j = {γ̂j,k; j = 1, . . . , p, k 6= j}.
I For j = 1, . . . , p, define

τ̂ 2
j =

∥∥∥ε̂j − Ê−jγ̂j

∥∥∥2

2
/T + λj

∥∥γ̂j
∥∥

1 (29)

Go back
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Using MB to Estimate Θε

I Define

Ĉ =


1 −γ̂1,2 · · · −γ̂1,p
−γ̂2,1 1 · · · −γ̂2,p

...
... . . . ...

−γ̂p,1 −γ̂p,2 · · · 1


and write

T̂2 = diag(τ̂ 2
1 , . . . , τ̂

2
p )

I The approximate inverse is defined as
Θ̂ = T̂−2Ĉ. (30)
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Using MB to Estimate Θε

1. Matrix symmetrization procedure (Fan et al., 2018):

Θ̂s
ε,ij = Θ̂ε,ij1

[∣∣∣Θ̂ε,ij

∣∣∣ ≤ ∣∣∣Θ̂ε,ji

∣∣∣]+ Θ̂ε,ji1
[∣∣∣Θ̂ε,ij

∣∣∣ > ∣∣∣Θ̂ε,ji

∣∣∣]
2. Eigenvalue cleaning (Callot et al., 2017) to make Θ̂s

ε
positive definite:
2.1 Write the spectral decomposition Θ̂s

ε = V̂′εΛ̂εV̂ε

2.2 Let Λε,m ≡ min{Λ̂ε,i|Λ̂ε,i > 0}. Replace all Λ̂ε,i < Λε,m with
Λε,m and define the diagonal matrix with cleaned
eigenvalues as Λ̃ε

2.3 Use Θ̃ε = V̂′εΛ̃εV̂ε which is symmetric and positive definite



62 / 72

Motivation Sparse Portfolios Factor Graphical Model Application Conclusions Appendix Asymptotic Theory

Define the excess portfolio return at time t + 1 with
transaction costs, c = 50bps, as

rt+1,portfolio =ŵ′trt+1 − c(1 + ŵ′trt+1)

p∑
j=1

∣∣∣ŵt+1,j − ŵ+
t,j

∣∣∣,
where ŵ+

t,j = ŵt,j
1 + rt+1,j + rf

t+1

1 + rt+1,portfolio + rf
t+1

I rt+1,j + rf
t+1 is sum of the excess return of the j-th asset and

risk-free rate,
I rt+1,portfolio + rf

t+1 is the sum of the excess return of the
portfolio and risk-free rate

Turnover =
1

T −m

T−1∑
t=m

p∑
j=1

∣∣∣ŵt+1,j − ŵ+
t,j

∣∣∣, m− training sample
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Finding # 4: De-biased sparse portfolios have lower risk,
turnover and return compared to post-Lasso and non-sparse
counterparts. The OOS SR is, overall, comparable:

De-Biasing Post-Lasso Non-Sparse

MRC MRC MRC

Return Risk SR T/O Return Risk SR T/O Return Risk SR T/O

PC0 0.0023 0.0100 0.2266 0.7952 0.0287 0.1217 0.2362 2.1249 0.0539 0.2522 0.2138 2.9458
PC 0.0091 0.0300 0.3117 1.2113 0.0290 0.1005 0.2882 2.1756 0.0287 0.1049 0.2743 3.7190
FF1 0.0109 0.0346 0.3213 0.8298 0.0207 0.1192 0.1738 2.1589 0.0497 0.2200 0.2258 2.7245
FF3 0.0072 0.0265 0.2721 0.9142 0.0157 0.1245 0.1263 2.2245 0.0384 0.1319 0.2908 2.4670
FF5 0.0073 0.0300 0.2467 0.9507 0.0212 0.1127 0.1879 2.2542 0.0373 0.1277 0.2921 2.4853

Table 5: Sparse vs Non-sparse portfolio: Monthly portfolio returns, risk, Sharpe ratio
and turnover, (µ, σ) = (0.0080, 0.05).
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Finding # 5: De-biasing leads to higher return and SR. Despite
higher risk of de-biased portfolios, the risk constraint σ = 0.05 is
satisfied:

Sparse MRC

Return Risk SR

Lasso (PC0) 0.0007 0.0048 0.1406
Debiased Lasso (PC0) 0.0023 0.0088 0.2266

Lasso (PC) 0.0006 0.0052 0.1122
Debiased Lasso (PC) 0.0067 0.0265 0.2542

Lasso (FF1) 0.0007 0.0039 0.1902
Debiased Lasso (FF1) 0.0109 0.0346 0.3213

Lasso (FF3) 0.0004 0.0040 0.1113
Debiased Lasso (FF3) 0.0072 0.0265 0.2721

Lasso (FF5) 0.0002 0.0042 0.0577
Debiased Lasso (FF5) 0.0073 0.0300 0.2467

Table 4: Sparse portfolio: Monthly portfolio returns, risk and Sharpe ratio, (µ, σ) =
(0.0080, 0.05).
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7. Asymptotic Theory
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Assumptions
rt︸︷︷︸

p×1

= B ft︸︷︷︸
K×1

+ εt, t = 1, . . . ,T

(A.1) (Spiked covariance model) As p→∞,
Λ1 > Λ2 + . . . > ΛK � ΛK+1 ≥ . . . ≥ Λp ≥ 0, where
Λj = O(p) for j ≤ K, and Λj = o(p) for j > K.

(A.2) (Pervasive factors) There exists a p.d. K × K matrix B̆ such
that

∣∣∣∣∣∣∣∣∣p−1B′B− B̆
∣∣∣∣∣∣∣∣∣

2
→ 0 and λmin(B̆)−1 = O(1) as p→∞.

(A.3) (Beta mixing) Let F t
−∞ and F∞t+k denote the σ-algebras

generated by {εu : u ≤ t} and {εu : u ≥ t + k} respectively.
Then {ε}u is β-mixing in the sense that βk → 0 as k →∞:

βk = sup
t

E

[
sup

B∈F∞t+k

∣∣∣Pr
(

B|F t
−∞

)
− Pr

(
B
)∣∣∣] .
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Assumptions

I Let cov(rt) ≡ Σ = ΓΛΓ
′

I Define Σ̂, Λ̂K, Γ̂K to be the estimators of Σ,Λ,Γ
I Let Λ̂K = diag(λ̂1, . . . , λ̂K) and Γ̂K = (v̂1, . . . , v̂K)

(B.1)
∥∥∥Σ̂−Σ

∥∥∥
max

= Op(
√

log p/T),

(B.2)
∥∥∥(Λ̂K −Λ)Λ−1

∥∥∥
max

= Op(
√

log p/T),

(B.3)
∥∥∥Γ̂K − Γ

∥∥∥
max

= Op(
√

log p/(Tp)).

(C.1) ‖Σ‖max = O(1) and ‖B‖max = O(1),
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Notation

Θ̂ = Θ̂ε − Θ̂εB̂[Θ̂f + B̂′Θ̂εB̂]−1B̂′Θ̂ε

ŷ = Rw + e (31)

I Denote S0 ≡ {j : wj 6= 0} to be the active set of variables,
where w is a vector of true portfolio weights in equation
(31). Also, let s0 ≡ |S0|.

γ̂j = arg min
γ∈Rp−1

(∥∥∥ε̂j − Ê−jγ
∥∥∥2

2
/T + 2λj‖γ‖1

)
, (32)

I Let Sj ≡ {k : γj,k 6= 0} be the active set for row γj for the
nodewise regression in (32), and let sj ≡

∣∣Sj
∣∣. Define

s̄ ≡ max1≤j≤p sj.
I We use a .P b to denote a = OP(b).
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Asymptotic Properties of FMB

Θ̂ = Θ̂ε − Θ̂εB̂[Θ̂f + B̂′Θ̂εB̂]−1B̂′Θ̂ε

Theorem 1 (Consistency of Θ̂ε)

Suppose that Assumptions (A1)-(A3), (B1)-(B3) and (C1) hold.
Let ωT ≡

√
log p/T + 1/√p. Then

maxi≤p(1/T)
∑T

t=1|ε̂it − εit|2 .P ω
2
T and

maxi,t|ε̂it − εit| .P ωT = op(1). Under the sparsity assumption
s̄2ωT = o(1), with λj � ωT , we have

max
1≤j≤p

∥∥∥Θ̂ε,j −Θε,j

∥∥∥
1
.P s̄ωT ,

max
1≤j≤p

∥∥∥Θ̂ε,j −Θε,j

∥∥∥2

2
.P s̄ω2

T
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Asymptotic Properties of FMB

Theorem 2 (Consistency of Θ̂)

Under the assumptions of Theorem 1 and, in addition, assuming∥∥Θε,j
∥∥

2 = O(1), we have

max
1≤j≤p

∥∥∥Θ̂j −Θj

∥∥∥
1
.P s̄2ωT ,

max
1≤j≤p

∥∥∥Θ̂j −Θj

∥∥∥2

2
.P s̄ω2

T .

Lemma 1
Under the assumptions of Theorem 2, we have
|ŷ − y| .P s̄2ωT = op(1), where y was defined in (11).



71 / 72

Motivation Sparse Portfolios Factor Graphical Model Application Conclusions Appendix Asymptotic Theory

Asymptotic Properties of De-Biased Portfolio Weights

Theorem 3 (Consistency of ŵMRC,DEBIASED)

Under the assumptions of Theorem 2, consider the linear model
ŷ = Rw + e with e ∼ D(0, σ2

e I), where σ2
e = O(1). Consider a

suitable choice of the regularization parameters λ � ωT for the lasso
regression in (13) and λj � ωT uniformly in j for the lasso for
nodewise regression in (28). Assume (s0 ∨ s̄2) log(p)/

√
T = o(1).

Then
√

T(ŵMRC,DEBIASED−w) = W + ∆, W = Θ̂R′e/
√

T,

‖∆‖∞ .P (s0 ∨ s̄2) log(p)/
√

T = op(1).

If e ∼ N (0, σ2
e I), let Ω̂ ≡ Θ̂Σ̂Θ̂′. Then W|R ∼ Np(0, σ2

e Ω̂) and∥∥∥Ω̂−Θ
∥∥∥
∞

= op(1).
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Asymptotic Properties of Post-Lasso Portfolio Weights

Theorem 4 (Consistency of post-Lasso weights estimator)

Suppose the restricted eigenvalue condition and the restricted sparse
eigenvalue condition on the empirical Gram matrix hold (see
Condition RE(c̄) and Condition RSE(m) of Belloni & Chernozhukov,
2013, p. 529). Let ŵ be the post-Lasso MRC weight estimator from
Algorithm 1, we have

‖ŵ −w‖1 .P

σe

(
(s0ωT) ∨ (s̄2ωT)

)
, in general,

σes0

(√
1
T + 1√p

)
, if s0 ≥ s̄2 & Ξ = Ξ̂ wp→ 1.
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