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Abstract

Covariance matrix estimates are required in a wide range of applied problems
in multivariate data analysis, including portfolio and risk management in finance,
factor models and testing in economics, and graphical models and classification in
machine learning. In modern applications, where often the model dimensionality
is comparable or even larger than the sample size, the classical sample covariance
estimator lacks desirable properties, such as consistency, and suffers from eigen-
value spreading. In recent years, improved estimators have been proposed based
on the idea of regularization. Specifically, such estimators, known as rotation-
equivariant estimators, shrink the sample eigenvalues, while keeping the eigenvec-
tors of the sample covariance estimator. In high dimensions, however, the sample
eigenvectors will generally be strongly inconsistent, rendering eigenvalue shrink-
age estimators suboptimal. We consider an estimator that goes beyondmere eigen-
value shrinkage and aims at precise estimation of eigenvectors in sparse settings,
without requiring eigenvalues to diverge. The rate of convergence is provided in
terms of spectral norm and it achieves the optimal rate under reasonable assump-
tions. We also provide a numerical simulation demonstrating the superior perfor-
mance of the proposed estimator as compared to the competition.
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1 Introduction

Covariance matrix estimation is fundamental to multivariate statistical analysis. In

statistics and machine learning, some of its applications include graphical modeling,

clustering, classification by linear or quadratic discriminant analysis and dimensional-

ity reduction by PCA. In finance, covariance estimates play a central role in portfolio

optimization and risk management. In economics, its uses include Kalman filtering,

factor analysis, hypothesis testing, GLS and GMM. Covariance estimation is also key

in many application in signal processing, bioinformatics and several other fields.

With rapidly increasing availability of data, the analysis of covariance matrices in

the low-dimensional (or classical) regime quickly becomes obsolete. This paper con-

siders a large-dimensional framework, where the number of variables p is comparable

or even larger than the sample size n. In such settings, the sample covariance estimator

S loses desirable properties and its classical theoretical foundations break down. For

instance, if p > n, S is not full rank, so the inverse does not exist. Even when S is invert-

ible, its inverse is highly biased for the theoretical inversewhen p and n are comparable.

In portfolio optimization this may lead to imprecise and highly volatile weights. Sev-

eral other major issues such as eigenvalue spreading and eigenvector inconsistency are

considered in this manuscript.

On the other hand, while a generic high-dimensional analysis is complicated, spar-

sity may be a reasonable simplifying assumption to resort to. Furthermore, in applica-

tions ranging from genomics to finance, sparsity-inducing approach may be preferred

to unrestricted estimation. For example, assets weights in eigenportfolio methodology

are proportional to the corresponding eigenvector entries; hence, sparse estimation of

an eigenvector leads to more parsimonious allocations with less associated transaction

costs. In addition, sparse estimates are easier to interpret.

The literature on covariance estimation proposed some remedies to tackle these

challenges. One approach is to shrink a high-variance sample estimator to some struc-

tured matrix which may be highly biased and thus produce a better estimator which
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would achieve optimal bias-variance trade-off. Another approach is to assume a low-

dimensional structure in the data as in factor models and consider the implied covari-

ance. Statisticians and mathematicians have also looked into estimation based on the

behavior of randommatrices, where the analysis is primarily driven by theoretical ad-

vancements in random matrix theory.

This paper proposes an estimator that is suitable for the high-dimensional regime,

analyzes its theoretical properties and provides a numerical experiment comparing it

with the alternative methods. The manuscript is structured as follows. Section 2 de-

scribes some of the phenomena and challenges that arise in settings where the number

of dimensions is large, reviews some existing approaches and, in this context, motivates

the proposed estimator. Section 3 described the model setup, introduces the estimator

and point out the similarities with the factor model framework. Section 4 considers a

numerical simulation and Section 5 concludes and mentions possible extensions.

Notation. For a vector v ∈ Rd, we write its i-th element as vi. The corresponding ℓp

norm is ∥v∥p =
(∑d

i=1 |vi|p
)1/p. For a matrix A ∈ Rm×d, we write its (i, j)-th entry

as {A}ij and denote its i-th row (transposed) and j-th column as column vectors Ai·

and A·j respectively. Its singular values are σ1(A) ≥ σ2(A) ≥ . . . ≥ σq(A), where

q = min(m, d). The spectral norm is a matrix operator norm induced by the Euclidean

norm, ∥A∥2 = max
v ̸=0

∥Av∥2
∥v∥2

= σ1(A). The max and Frobenius norms are given as ∥A∥max =

max
i,j

|aij| and ∥A∥F =
√

tr(A′A) =
√∑q

i=1 σ
2
i (A) respectively. Finally, for a sequence

of random variables {Xn}∞n=1 and a sequence of real nonnegative numbers {an}∞n=1,

denote Xn = OP(an) if ∀ϵ > 0,∃M,N > 0 such that ∀n > N, P(|Xn/an| ≥ M) < ϵ; and

denote Xn = oP(an) if ∀ϵ > 0, lim
n→∞

P(|Xn/an| ≥ ϵ) = 0. Finally, let 1(·) be an indicator

function and Id is a d× d identity matrix.
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2 Background & Related Literature

We observe a data matrix X ∈ Rn×p, where n and p are the number of observations

and the number of variables respectively. Denote the population covariance matrix by

Σ ∈ Rp×p and write its eigendecomposition as

Σ = ULU ′ =

p∑
j=1

ℓjuju
′
j,

whereU = [u1 · · · up] is an orthonormalmatrix of eigenvectors, andL = diag(ℓ1, . . . , ℓp)

is a diagonal matrix of eigenvalues with ℓ1 ≥ . . . ≥ ℓp. The sample covariance estimator

is given as S := 1
n
X ′X (demeaned data) and we write its eigendecomposition as

S = V ΛV ′ =

p∑
j=1

λjvjv
′
j,

with V = [v1 · · · vp] and Λ = diag(λ1, . . . , λp).

2.1 Sample Eigenvalues

It is well-known that S is unbiased and consistent in a classical regime, i.e. when p

is fixed and n diverges. Furthermore, it is generally invertible and has an asymptoti-

cally normal spectral distribution centered around the true value (Anderson [1963]),
√
n(λi − ℓi)

d→ N (0, 2ℓ2i ), j ≤ p.

However, it was observed that many of the desirable properties cease to hold once

p also grows, specifically when γ := lim p
n
∈ (0,∞). In fact, consistent estimation of

the entire spectrum becomes a lot more problematic as both sample eigenvalues and

eigenvectors tend to concentrate beyond their true destination.

Specifically, Marčenko and Pastur [1967] derived the empirical distribution of sam-

ple eigenvalues, which became known as Marčenko-Pastur distribution. In its simple

formulationwhenΣ = Ip, the empirical distribution of sample eigenvalues of a random

matrix Fp(x) :=
1
p
#{λj ≤ x} approaches a limiting distribution for which the density
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is given as

fMP (x) =

√
(λ+ − x)(x− λ−)

2πxγ
, λ− = (1−√

γ)2, λ+ = (1 +
√
γ)2,

where λ−, λ+ are the lower and upper bounds of the support. This result illustrates

how sample eigenvalues spread out away from their true values, in this case ℓi = 1, ∀i.

Moreover, there is a positive bias in the largest sample eigenvalues and a negative bias

in the smallest eigenvalues. Furthermore, the magnitude of the bias increases with p.
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Figure 1: Marčenko-Pastur and empirical sample eigenvalue distributions
For empirical distribution both panels have n = 1000, while γ := p/n is different. Left: γ = .2;

Right: γ = .8.

Figure 1 plots the theoretical density on top of the empirical sample eigendistribu-

tion for n datapoints sampled fromNp(0, Ip) for different values of γ := p/n. It demon-

strates two phenomena. First, the sample eigenvalues are spread out asymmetrically

around the true value of 1. Second, the smallest and largest eigenvalues concentrate

around λ− and λ+ respectively. In fact, Bai-Yin’s law (Bai and Yin [1993]) states that for

matrices with bounded fourth moments the extreme sample eigenvalues land almost

surely on these edges, i.e. λp
a.s.→ λ− and λ1

a.s.→ λ+. Excellent treatment is given in Bai

and Silverstein [2010].

This paper focuses on the case when a few population eigenvalues are larger than
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the bulk, in other words top eigenvalues are spiked (Johnstone [2001]),

Σ = diag(ℓ1, . . . , ℓr, 1, . . . , 1), ℓr > 1.

The convergence of the sample eigenvalues in this case depends on the magnitude of

the true spikes in comparison to the so-called BBP transition point λ1/2
+ , named after its

discoverers Baik et al. [2005]. Specifically, we have for j ≤ r,

λj
a.s.→


λ+, ℓj < λ

1/2
+ ,

ℓj + γ
ℓj

ℓj−1
, ℓj > λ

1/2
+ ,

as n, p → ∞. That is, there is an upward bias in leading sample eigenvalues and the

amount of bias is asymptotically known. Baik and Silverstein [2006] establish the al-

most sure limits of the eigenvalues of large sample covariancematrices in a spiked pop-

ulation model framework. Moreover, the exact asymptotic distribution of the largest

and smallest eigenvalues is also known (Tracy and Widom [1996]).

Hence, if the true spikes are not large enough, the sample eigendistribution will fol-

low the Marčenko-Pastur distribution. In the opposite case, the spiked sample eigen-

values will overshoot the true counterparts and lie above the Marčenko-Pastur sea. In

general this knowledge can be used as a heuristic for inferring the number of principal

components or factors.

In view of the above phenomena, statisticians have proposed to construct rotation-

ally invariant estimators (RIE), which would correct the sample eigenvalues while as-

suming the sample and true eigenvectors coincide. This includesmany popular estima-

tors, e.g. linear shrinkage of the sample covariance with a structured matrix (typically,

an identity) proposed in Ledoit and Wolf [2004] or nonlinear extensions as in Ledoit

and Wolf [2012], which in essence seek to pull upward and downward biased sam-

ple estimates towards the center. Another approach is to set all eigenvalues inside the

Marčenko-Pastur sea to some constant, as these are deemed as noise, while keeping the
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spikes unaltered; this strategy is known as eigenvalue clipping (Bouchaud and Potters

[2009]). Donoho et al. [2018] do not address eigenvector inconsistency but partially

address fix this issue by proposing an RIE that accounts for the non-vanishing angle

between population and sample eigenvectors. They find a univariate function ν that

when applied to eigenvalues would optimally (for a given loss) shrink it such that

eigenvector estimation inaccuracy is taken into consideration.

2.2 Sample Eigenvectors

However, the assumption that sample and population eigenvectors coincide in high di-

mensions is unrealistic as sample eigenvectors are generally also inconsistent in high

dimensions. This motivates us to develop an estimator that primarily aims at accurate

eigenvector estimation. We seek to carefully characterize the assumptions this will re-

quire and the trade-offs between different sets of assumptions. Before that, we briefly

review some of the related work without aiming to be exhaustive.

As described in the previous section, there has been a lot of work done examining

the features of sample eigenvalues. Bai et al. [2007] points out that this may partly be

explained by the quantum mechanics origins of the random matrix theory, where the

sample eigenvalues are associated with energy levels of particles. Many applications,

however, require precise estimates of eigenvectors and the research in this direction is

gradually being recognized.

Johnstone andLu [2004] propose an (adaptive) sparse PCA for settingswhen p, n →

∞ in a single factor model framework. They show that plain PCA leads to consistent

estimates if and only if p/n → 0, however it is possible to recover consistency even

when p ≫ n if some preselection of variables, possibly in an alternative sparse basis,

is made in advance. Their Theorems 1,2 and 3 characterize the inconsistency of PCA

when lim p/n = γ > 0 in terms of an angle between the true leading eigenvector and its

estimate. Theorem 5 suggest a solution for cases when the true principal eigenvector

satisfies ℓq-ball sparsity assumption.
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In a closely relatedwork, Johnstone andLu [2009] provide a similar characterization

of inconsistency in Theorem 1 but in terms of the normalized inner product between

the true and estimated principal eigenvectors, while Theorem 2 proves that consistency

is recovered as long as the PCA is performed after the proposed variable selection al-

gorithm.

Paul [2007] characterize the asymptotic behavior of sample eigenvectors and its de-

pendence on the eigenvalue phase transition. Specifically, under mild conditions on a

spiked covariance model, as p/n → γ ∈ (0, 1)we have

⟨vj, uj⟩2
a.s.→


0, ℓj < λ

1/2
+ ,

1−γ/(ℓj−1)2

1+γ/(ℓj−1)
, ℓj > λ

1/2
+ .

That is, the sample eigenvector vj is asymptotically orthogonal to the true vector uj

when the corresponding eigenvalue is small. On the other hand, consistent estimation

of eigenvectors with sufficiently strong signals requires γ → 0, , i.e. n grows faster

than p. The conventional PCA becomes confused in the presence of large number of

variables. Sparsity, either in the original or some transformed domain, becomes crucial

for consistent estimation of principal component directions.

Shen et al. [2016] further investigate consistency and asymptotic behavior of sample

eigenvalues and eigenvectors in a more general multiple-component spike covariance

framework with r spikes, ℓ1 > . . . > ℓr ≫ ℓr+1 → . . . → ℓp → 1. They also consider a

more general asymptotic framework with p
nℓj

→ cj > 0, j ≤ r, where 0 < c1 < . . . <

cr < ∞; allowing ℓj to potentially diverge turns out to be crucial. Their Theorem 3

states that


λj

ℓj

a.s.→ 1 + cj, 1 ≤ j ≤ r,

nλj

pℓj

a.s.→ 1, r + 1 ≤ j ≤ n ∧ p,

(1)
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and 

|⟨vj, uj⟩|
a.s.→ (1 + cj)

−1/2, 1 ≤ j ≤ r,

|⟨vj, uj⟩|
a.s.→ Oa.s.

(
(n/p)1/2

)
, r + 1 ≤ j ≤ n ∧ p,

∠ (vj, span(uk : k = r + 1, . . . , p))
a.s.→ 0, r + 1 ≤ j ≤ n ∧ p.

(2)

Equation (1) formalizes the idea that sample eigenvalues with stronger signals will

be less biased, but still almost surely biased when cj ̸= 0. Notice that there is no bias

if the eigenvalues grow linearly with the dimension. Equation (2) reveals that leading

sample eigenvectors lie in a cone along the true eigendirections as long as the ratio of

the dimension to the product of the sample size and the spike size, p
nλj

→ cj > 0, j ≤ r.

This shows that sample eigenvectors might still be consistent in the high-dimensional

regime when γ > 0 as long as their corresponding eigenvalues are large. Intuitively, a

strong signal helps identify the direction of most variation.

Observe that p
nℓj

→ cj > 0 can contain three cases: (i) p, n, ℓj → ∞, (ii) p, ℓj → ∞,

while n < ∞, (iii) p, n → ∞ and ℓj < ∞. The result stated in equation (2) refers to

the first case, Shen et al. [2016] also covers the second case. We focus on the third case,

where leading eigenvalues are bounded.

A natural extension to the work of Paul [2007] and Shen et al. [2016] is the study by

Wang and Fan [2017] who analyze the asymptotic distributions of the sample eigen-

structure and derive the precise rates of convergence in a similar setup with a high-

dimensional spiked covariance and p, n, ℓj → ∞ with p
nℓj

< ∞, j ≤ r. Although this

comes at the cost of a sub-Gaussianity assumption on the data. In particular, they es-

tablish that the normalized spiked part of the sample eigenvector converges to a vector

of ones. Fan et al. [2013] also consider a diverging eigenvalue setup.

Instead of assuming increasing eigenvalues, a simple alternative approach which

permits efficient estimation in high dimensions is sparsity. Bickel and Levina [2008]

propose regularizing a large covariance matrix by hard thresholding, which leads to

a consistent (in the operator norm) estimator as long as the true covariance matrix is

sparse. However, imposing sparsity on a high-dimensional covariance directly may
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be unjustified in certain applications, e.g. in portfolio theory covariance of asset re-

turns is not sparse. Fan et al. [2013] consider conditional sparsity, i.e. sparsity after

estimating and accounting for the factor structure. To distinguish the signal and noise

components, they assume diverging (with p) signal eigenvalues. This assumptionmay

be ”misleading in many economic and financial applications”, as pointed out some re-

searchers (Fan et al. [2013], discussion on the paper).

On the other hand, the eigenvectors themselves are often sparse in many high-

dimensional applications or may be required to be sparse in certain scenarios, e.g. in

capital allocation problems. This also leads to better interpretability since eigenvectors

are only linear combinations of a subset of variables. Most importantly, sparsity can

help even in cases when γ > 0 and the signal is bounded, ℓj = O(1). A similar idea is

considered in Amini andWainwright [2009], however they focus on sparse eigenvector

support recovery.

Besides, precise estimation of eigenvectors in high dimensions has its own benefit.

For example, the top eigenvectors of a covariance identify the directions of most vari-

ation, while the bottom eigenvectors of a graph’s Laplacian provide insights into its

cluster structure.

3 Model

Given a n× p data matrixX of p i.i.d. mean-zero variables with the population covari-

ance

Σ = E(X ′X) =
r∑

i=1

ℓiuiu
′
i +

p∑
i=r+1

ℓiuiu
′
i, (3)

and the sample covariance estimator

S =
1

n
X ′X =

r∑
i=1

λiviv
′
i +

p∑
i=r+1

λiviv
′
i,

where r is the number of signal eigenvalues (assumed to be known and fixed),

our primary goal is accurate estimation of Σ in a high-dimensional setting under a
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spiked covariance framework (Johnstone [2001]). Throughout this paper we measure

the estimation error in terms of spectral (operator) norm ∥ · ∥. By Weyl’s and Davis-

Kahan Theorems (see Appendix A.4) the ∥Σ̂ − Σ∥ → 0 implies the convergence of

the corresponding eigenvalues and eigenvectors as well as the convergence of PCA

loadings.

Assumption 1 (Spiked covariance). There are r ≪ p ∧ n spikes in eigenvalues ℓ1 > . . . >

ℓr > 1, independent of p and n, with ∆ := ℓr − ℓr+1 ≫ 0. All spiked eigenvalues are distinct.

Remark. In particular, while we need not have diverging signals, the eigengap ℓr−ℓr+1

should be large enough for identification purposes. This also inherently relates to the

eigenvector instability demonstrated in the following example.

Example. (Wainwright [2019]) Consider a perturbation of a diagonal A by another

diagonal matrix ϵP ,

Aϵ = A+ ϵP =

1 0

0 1.01

+ ϵ

0 1

1 0

 .

Clearly, the eigenvalues of unperturbed A are {1, 1.01} and the eigenvalues of the per-

turbed An are

{
1

2
(2.01 +

√
.0001 + 4ϵ2),

1

2
(2.01−

√
.0001 + 4ϵ2)

}
,

satisfying Weyl’s theorem

max
i=1,2

|ℓi(A)− ℓi(Aϵ)| =
1

2
|.01−

√
.0001 + 4ϵ2| ≤ ∥ϵP∥2 = ϵ,

and thus displaying resilience to small perturbations. On the other hand, the maximal

eigenvector of A changes its direction substantially from u1(A) = (0 , 1)′ to u1(Aϵ) ≈

(.53 , .85)′, so that ∥u1(A) − u1(Aϵ)∥2 ≫ ϵ. The problem arises due to small eigengap,
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and hence a large enough eigengap is needed to ensure the stability.

A simple example of a spiked model that was widely considered in the literature is

of the form,

Σ = ℓ1u1u
′
1 + Ip,

with ℓ1 > 0, ∥u1∥2 = 1, where u1 is a uniquemaximal eigenvector with eigenvalue 1+ℓ1

and all other eigenvalues are 1. That is, we have a low-rank perturbation of a sparse

matrix. Berthet and Rigollet [2013] examine the possibility of detection of the low-rank

component and propose a minimax optimal test based on an eigenvalue statistic.

Spiked models are also inherently related to factor models considered in financial

econometrics andwe examine the similarity in Section 3.2. The differencesmainly arise

due to different assumptions placed on the behavior of the eigenstructure.

Assumption 2 (High-dimensional asymptotics). n, p → ∞ and ℓj = O(1), j = 1, . . . , p.

Remark. In particular, we need not have strong (pervasive) signals, so it is not neces-

sary that ℓi = O(p), i ≤ r. In fact, the pervasiveness assumption (Fan et al. [2013]) can

make consistent estimation impossible in terms of spectral norm, as discussed in the

following example.

Example. Suppose we know the entire spectrum of Σ except for the first eigenvector,

for which suppose we have a good estimator with ∥v1 − u1∥ = Op(n
−1/2). Then we

can construct a sample covariance S∗ with this population information in its spectrum,

then

∥S∗ − Σ∥ = ∥ℓ1(v1v′1 − u1u
′
1)∥ = ℓ1Op(∥v1 − u1∥) = Op(ℓ1n

−1/2),

which does not converge if ℓ1 grows linearly in p and n = O(p2), so Σ could not be

estimated consistently in terms of spectral norm in the presence of diverging spiked

eigenvalues.
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In accordance with Equation (3) we can decompose the true covariance into two

parts,

Σ = Σs + Σe, (4)

where the two matrices on the right-hand side represent signal and noise (error) com-

ponents. In particular, one can view the above equation as low-rank plus sparse matrix

structure. This idea is formalized in the following assumption.

Assumption 3 (Low-rank plus sparse). In equation (4), rank(Σs) = r and Σe is (approxi-

mately) sparse with bounded eigenvalues. Moreover, Σs has a fixed number r sparse unit norm

eigenvectors, ∥uj∥0 = s, j ≤ r, ∥uj∥2 = 1, ∀j.

Remark. The low-rank plus sparse structure has been thoroughly studied, see e.g.

Wright et al. [2009] or Candès et al. [2011] on the possibility of identification of the

two matrices, low-rank and sparse, only from the sum alone. This structure is also

implied by approximate factor models (Chamberlain and Rothschild [1983]) where

Σ = ΛΛ′ + Ω.

Remark. In general, the results throughout this paper can be adapted to cases with

approximate sparsity. For example, if ũ1 is an approximation of exactly s-sparse vec-

tor u1 of Σs, we can instead analyze a slightly different perturbation, S = Σ + E =

Σ̃ + (E − Σ̃ + Σ) = Σ̃ + Ẽ, where Ẽ := E − Σ̃ + Σ.

Remark. Notice that this formulation with sparse eigenvectors does not necessarily

imply that Σ is sparse. A similar framework with sparse eigenstructure was analyzed

by Amini and Wainwright [2009] with the focus on support recovery.

Notice that Σe is approximately sparse; we characterize sparsity as in Bickel and

Levina [2008],

m := max
i≤p

∑
j≤p

|{Σe}i,j|q,
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so that m stays bounded for some 0 ≤ q < 1, although for simplicity we will focus on

the case with q = 0 corresponding to exact sparsity, m = maxi≤p

∑
j≤p 1({Σe}i,j ̸= 0).

The fact that eigenvalues are thus bounded can be seen from

∥Σe∥ ≤ ∥Σe∥1 ≤ max
i≤p

∑
j≤p

|{Σe}i,j|q({Σe}i,i{Σe}j,j)(1−q)/2 = O(m),

when {Σe}i,i are bounded. This assumption is not very restrictive and corresponds

to weak correlation between idiosyncratic components in factor models.

3.1 Estimator

In what follows we consider a simpler version of Equation (4) with r = 1, namely

Σ = ℓ1u1u
′
1 + Σe, (5)

where the single signal eigenvector is s-sparse, i.e. ∥u1∥0 = s, and Σe is approximately

sparse in a sense that ∥Σe∥ has bounded eigenvalues as p → ∞. In other words, the

covariance is a rank-1 perturbation of a sparse matrix.

As a first step, we seek to estimate the sparse eigenvectors of Σs. To recover the

first eigenvector, one could proceed by explicitly imposing the sparsity restriction in a

rank-one approximation problem by solving

min
ν,ξ

∥X ′X − νξξ′∥2F

ν ≥ 0, ∥ξ∥0 ≤ s, ∥ξ∥2 = 1,

(6)

which is equivalent to solving

min
ξ

ξ′X ′Xξ

∥ξ∥0 ≤ s, ∥ξ∥2 = 1.

(7)

Clearly, both are NP-hard problems due to the presence of ∥ · ∥0-norm. Efficient
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convex relaxations with ∥ · ∥1-norm substitution have been studied (d’Aspremont et al.

[2007]) as well as alternative formulations imposing sparse structure (e.g. Jolliffe et al.

[2003],Zou et al. [2006], Witten et al. [2009]). The theoretical underpinnings for the

above algorithms and formulations are less developed.

Luckily, it is possible to directly approximate the solution via the principle of power

iteration. Yuan and Zhang [2011] propose a truncated power method which tackles

the optimization problem in Equation (7) and analyze its theoretical properties. This

approach achieves an optimal bound (Cai and Zhou [2012]) and is guaranteed to con-

verge undermild technical conditions. The goal is to recover a sparse eigenvector given

a perturbation of an original matrix.

The truncated power iteration procedure is described in Algorithm 1. The only

difference with a conventional power method is in the truncation step, which forces

the p − r smallest entries of a vector to zero in each iteration thus naturally inducing

sparse estimates.

The following perturbation formulation is useful,

S = Σ+ E, (8)

where S is a sample covariancematrix, andE := S−Σ is an error. The theorem of Yuan

and Zhang [2011] is adapted in 1 and assures the recovery of s-sparse eigenvectors so

long as the spectral norm of ŝ× ŝ principal submatrix ofE, denoted as Eŝ, is sufficiently

small for some initial estimate of sparsity ŝ. Notice that this norm can be a substantially

smaller than the norm of the full matrix E.

Theorem 1 (Sparse recovery). Given Assumptions 1, 3 and the initial vector v̂
(0)
1 with

∥v̂(0)1 ∥0 ≤ ŝ, ∥v̂(0)1 ∥2 = 1, ŝ ≥ s, |v̂(0)1
′u1| − δ ≥ θ, where 0 < θ < 1 and

δ :=

√
2∥Eŝ∥√

∥Eŝ∥2 + (∆− 2∥Eŝ∥)2
,
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we have √
1− |v̂(t)1

′u1| ≤ ct1

√
1− |v̂(0)1

′u1|+
√
10δ(1− c1)

−1, ∀t ≥ 0, (9)

where c1 can be chosen to be less than 1.

Proof. See Yuan and Zhang [2011] Theorem 4.

Since the convergence of the algorithm is guaranteed, let us denote limt→∞ v̂
(t)
1 = v̂1.

Corollary 1.1. Given the assumptions of Theorem 1, we have

∥v̂1 − u1∥ = OP(∥Eŝ∥).

Corollary 1.2. Given the assumptions of Theorem 1 and assuming entries in E are Gaussian

iid and ŝ = O(s), we have

∥v̂1 − u1∥ = OP

(√
s log p

n

)
.

Theorem 1 bounds the angle between the t-th iteration of sparse eigenvector esti-

mate v̂(t)1 and its population counterpart u1. Corollary 1.2 is an immediate consequence

and states that the error depends on the norm of s-dimensional principal submatrix

which could bemuch smaller than the norm of the entire perturbation implied by stan-

dard perturbation inequalities. Corollary 1.2 follows when entries of the perturbation

are normally distributed; this is a standard result in random matrix theory. The argu-

ments of the proof are based on eigenvector perturbation inequalities provided in the

appendix. Initialization is also discussed.

Hence, this iterative approach can recover the leading sparse eigenvector even from

noisy observations. The remaining sparse eigenvector estimates could be obtained

greedily, i.e. for the second iteration one would optimize over an unexplained com-

ponent X ′X − (ξ̂′X ′Xξ̂)ξ̂ξ̂′, where ξ̂ solves equation (7). This procedure is known as

iterative deflation.

Suppose that we have obtained eigenvector estimates {v̂}ri=1. The corresponding

weight estimates for r topmatrices can be estimated consistently by least squares under
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the standard assumptions with usual parametric rates, i.e. |λ̂j − ℓj| = O(n−1/2). This

completes the estimation of the signal part of the covariance matrix.

Once the signal component is estimated we turn to the error part Σe. Consistent

with the assumption of conditionally sparse covariance, after removing the estimated

low-rank part we threshold the remainder. In a general case one can obtain an estimate

of the remainder as

Ŝe = S −
r∑

j=1

λ̂j v̂j v̂j
′, (10)

where we subtract the estimated low-rank component from the sample covariance.

Next we apply entry-wise adaptive hard thresholding similar to Cai and Liu [2011]

to obtain Ŝτ
e , where each entry is set as

{Ŝτ
e }i,j =


{Ŝe}i,i, i = j,

{Ŝe}i,j1(|{Ŝe}i,j| ≥ τ

√
{Ŝe}i,i{Ŝe}i,j), i ̸= j,

(11)

for a given τ > 0, which amounts to thresholding the corresponding correlationmatrix.

This approach yields an optimal rate of convergence (Cai and Zhou [2012]) for Σe.

Theorem 2 (Error component). Under assumptions of Theorem 1, Assumption 2 and given

∥S − Σ∥max = OP

(√
log p
n

)
, for a large enough τ > 0 we have

∥Ŝτ
e − Σe∥ = Op

(
m

√
s log p

n

)
.

Proof. See Appendix A.2.

Optimal estimation of a sparse component is discussed in detail in Cai and Zhou

[2012], Fan et al. [2013]. The assumptions are not unusual and are easy to verify.

Thus the final estimator is given as

Ŝ =
r∑

j=1

ℓ̂j v̂j v̂j
′ + Ŝτ

e , (12)
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The estimation involves two stages, one for estimating each of the components. The

full algorithm is provided in Algorithm 2.

Theorem 3. Suppose the assumptions of Theorem 2 hold. Then

∥Ŝ − Σ∥ = Op

(
m

√
s log p

n

)
.

Proof. See Appendix A.3.

Notice that this estimator achieves the optimal boundCai and Zhou [2012] for high-

dimensional covariance estimators in sparse settings. The proof is provided for rank-1

perturbations as in Equation (5), however it can be generalized to multi-spike covari-

ances.

3.2 Factor Model framework

This subsection demonstrates that the covariance structure considered in the previous

sections is implied byweak (non-pervasive) factorswith approximately sparse loading

matrices.

A latent factor model is given as

Xi
p×1

= ΛFi
r×1

+ ei, (13)

Λ is an approximately sparse loading matrix for the r factors in Fi, ei is an idiosyncratic

disturbance; and i = 1, . . . , n. Only Xi are observable. The latter equation can be

rewritten in matrix form

X = FΛ′ + e, (14)

where X = [X1 · · · Xn]
′ and F = [F1 · · · Fn]

′.

For the above factor model specification, we have the corresponding population

covariance matrix of Xi,

Σ := E(X ′X) = ΛΛ′ + Ω, (15)
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where Ω = E(e′e) is assumed to be approximately sparse. Hence Equation (15) admits

low-rank plus sparse representation. The two components can be asymptotically iden-

tified only when the eigengap ∆ is sufficiently large while Ω has bounded eigenvalues

as a consequence of sparsity. This is crucial for consistent estimation since if nonzero

eigenvalues ofΛΛ′ are smaller than ∥Ω∥, then it is impossible to distinguish signal from

noise. In practice, factors are expected to exhibit sufficiently strong signal while the re-

maining part normally has weak correlation. The leading r eigenvectors ofΣ should be

nearly aligned with the corresponding columns of Λ. One can also view Σ in Equation

(15) as a perturbation of ΛΛ′ by Ω. Further, denote the eigendecomposition of Σ as in

Equation (3).

In vanilla factor modeling, one can obtain factors and loading estimates via PCA by

solving
argmin

F,Λ
∥X − FΛ′∥2F

p−1Λ′Λ = Ir, F ′F diagonal.

We can formulate a similar optimization problem in a penalized PCA fashion, simi-

lar to Equation (7), that would correspond to a sparse setting considered in this paper.

Specifically, to obtain an approximate solution for the first loading column Λ1 one can

solve
argmin

Λ1

Λ′
1X

′XΛ1

∥Λ1∥0 ≤ s, ∥Λ1∥2 = 1.

(16)

Clearly, the truncated power iteration method described earlier can be used. Its

solution Λ̂ will be the first r sparse eigenvectors of X ′X . The corresponding factor

estimate can simply be calculated as F̂i = (Λ̂′Λ̂)−1Λ̂′Xi = Λ̂′Xi. Hence, the technique

and the theory considered above are applicable when a sparsity assumption on the

loadings is justifiable. This may also be beneficial for constructing interpretable factor

models; a similar setup from the Bayesian viewpoint is considered in Pati et al. [2014].
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4 Numerical experiment

Generate the covariance as follows

Σ = ULU ′ = UrLrU
′
r + Σe,

where Ur is a p × r matrix of eigenvectors corresponding to top eigenvalues and Lr is

an r × r diagonal matrix of eigenvalues in descending order. Specifically, we set r = 2

across all simulations are generate the two columns in Ur = (u1 u2) as follows,

{u1}i =


1√
s
, i ∈ [1, s]

0, otherwise
, {u2}i =


1√
s
, i ∈ [s+ 1, 2s]

0, otherwise
,

We set ℓ1, ℓ2 to either (200, 100) or (500, 300). The entries of the error component Σe are

generated in a block-diagonal fashion with

{Σe}i,j = ρ|i−j|1(|i− j| ≤ 1),

and set ρ = .5. This design ensures sparsity and is sometimes referred to as MA(1).

The data X ∈ Rn×p is generated by drawing n samples from X ∼ Np(0,Σ). We run

100 Monte Carlo simulations. The proposed method is compared against POET (Fan

et al. [2013]), a hard-thresholding estimator of Bickel and Levina [2008] and a linear

shrinkage estimator of Ledoit and Wolf [2004].

We vary p ∈ {100, 300, 500} and the sparsity s ∈ {5, 15, 25}. The results report the

ratios of a spectral (or Frobenius) norm of the covariance estimation error of a given

method with respect to POET’s corresponding norm. Tables 1 and 2 consider cases

with ℓ1 = 200, ℓ2 = 100 and ℓ1 = 500, ℓ2 = 300 respectively. The proposed method is

dubbed as ”DSCE” for doubly sparse covariance estimator.

The tables are indicative of high estimation accuracy of the proposed method in

sparse settings as compared to the competition. The precision of DSCE seems to gen-
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Table 1: Ratios to POET error n = 300, ℓ1 = 200, ℓ2 = 100.

p Method Spectral Frobenius
s = 5 s = 15 s = 25 s = 5 s = 15 s = 25

100 DSCE 0.7462 0.7308 0.7800 0.7587 0.7776 0.7717
100 B&L 0.8701 0.9139 0.9287 0.9072 0.9246 0.9501
100 L&W 1.0297 1.0122 0.9598 1.0317 1.0066 0.9804
300 DSCE 0.7076 0.7382 0.7551 0.7380 0.7733 0.7706
300 B&L 0.8844 0.9253 0.9331 0.9073 0.9336 0.9481
300 L&W 1.0318 0.9989 0.9887 1.0518 1.0377 0.9894
500 DSCE 0.6943 0.7100 0.7362 0.6964 0.7390 0.7477
500 B&L 0.9127 0.9286 0.9463 0.9286 0.9483 0.9623
500 L&W 1.0937 1.0626 1.0215 1.1254 1.0750 1.0532

Table 2: Ratios to POET error n = 300, ℓ1 = 500, ℓ2 = 300.

p Method Spectral Frobenius
s = 5 s = 15 s = 25 s = 5 s = 15 s = 25

100 DSCE 0.7108 0.7135 0.7776 0.7292 0.7415 0.7677
100 B&L 0.8999 0.9257 0.9280 0.9183 0.9569 0.9454
100 L&W 1.0446 0.9944 0.9720 1.0603 1.0266 0.9937
300 DSCE 0.6919 0.7038 0.7395 0.7008 0.7299 0.7474
300 B&L 0.9144 0.9257 0.9239 0.9409 0.9542 0.9544
300 L&W 1.0358 1.0209 0.9789 1.0847 1.0125 0.9800
500 DSCE 0.6560 0.6886 0.6955 0.6877 0.7167 0.7115
500 B&L 0.9504 0.9685 0.9605 0.9593 0.9733 0.9714
500 L&W 1.0873 1.0594 1.0239 1.1203 1.0807 1.0673

erally increase with dimension p and decreased in sparsity s. As evident from Table

2, stronger signal makes both DSCE and POET perform better compared to the other

methods.

5 Concluding Remarks

Weconsider estimation high-dimensional covariance estimation in sparse settings. Our

approach goes beyond mere eigenvalue shrinkage by taking into consideration the be-

havior of eigenvectors in a large dimensional framework. Furthermore, we do not re-

quire diverging (pervasive) signals, but instead assume sparsity, which is a feature of

many large datasets and a desirable characteristic to require in a number of applica-
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tions. Our model consists of low-rank and sparse components, where the former also

has sparse eigenvectors.

Our analysis shows that accurate estimation is possible, with the rate of convergence

proportional to the optimal rate for sparse estimation as in Cai and Zhou [2012]. The

numerical experiment also reveals that the proposed algorithm can accurately estimate

the induced covariance. It would also be worth considering an empirical application

where nonzero coefficients are associated with loss, e.g. transaction costs in finance, so

that it is desirable to have sparse estimates.

Our empirical application also demonstrates that the proposed method may offer

substantial advantages over other high-dimensional estimation techniques. One of the

possible extensions is a closer examination of a multi-spike covariance model and the

issues arising therein, e.g. whether sparsity should vary across eigenvectors and how.

Another extension would be the consideration of linear shrinkage (of eigenvalues) of

a sparse estimator discussed here with a structured estimator. Finally, it is valuable to

explore the properties of the inverse (precision) estimator induced by the proposed

method.
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Appendix

A.1 Useful Lemmas

Lemma 1. For unit vectors u and v,

∥uu′ − vv′∥2F = 2− 2(u′v)2

Proof.

∥uu′ − vv′∥2F = tr((uu′ − vv′)(uu′ − vv′))

= 1− tr(uu′vv)− tr(vv′uu′) + 1

= 2− 2(u′v)2

Lemma 2. For a rank-1 matrix A = x1x
′
2 we have

∥A∥ = ∥x1∥2∥x2∥2.

Proof. The equality is trivial if x2 = 0, so consider x2 ̸= 0. For a vector u = x2
∥x2∥2 we have

∥A∥ ≥ ∥Au∥2 =
∥∥∥∥x1x′2 x2

∥x2∥2

∥∥∥∥
2

=
1

∥x2∥2
∥x1x′2x2∥2 =

∥x2∥22
∥x2∥2

∥x1∥2 = ∥x1∥2∥x2∥2.

On the other hand,

∥A∥ = ∥x1x′2∥2 ≤ ∥x1∥2∥x′2∥2 = ∥x1∥2∥x2∥2.
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A.2 Proof of Theorem 2

Proof. It suffices to prove that the max error is bounded

∥Ŝe − Σe∥max = OP

(√
s log p

n

)
.

The desired rate on adaptive threshold estimator would follow immediately as dis-

cussed in Cai and Liu [2011] and Rothman et al. [2009].

Recall from Equation 10 that

Ŝe = S − V̂rΛ̂rV̂
′
r ,

where V̂r is a p × r matrix of sparse eigenvector estimates and Λ̂r is an r × r diagonal

matrix of the corresponding eigenvalue estimates in descending order.

∥Ŝe − Σe∥max = ∥S − V̂rΛ̂rV̂
′
r − (Σ− UrLrU

′
r)∥max

≤ ∥S − Σ∥max + ∥V̂rΛ̂rV̂
′
r − UrLrU

′
r∥max

By assumption, ∥S−Σ∥max = OP

(√
log p
n

)
, sowewant to show ∥V̂rΛ̂rV̂

′
r−UrLrU

′
r∥max =

OP

(√
s log p

n

)
. Then since the eigenvalues are bounded by assumption, we have

∥V̂rΛ̂rV̂
′
r − UrLrU

′
r∥max

≤ ∥V̂r(Λ̂r − Lr)V̂
′
r∥max + ∥(V̂r − Ur)Lr(V̂r − Ur)

′∥max + 2∥UrLr(V̂r − Ur)
′∥max

= OP

(
∥Λ̂r − Lr∥max + ∥V̂r − Ur∥max

)
= OP

(√
s log p

n

)
.
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A.3 Proof of Theorem 3

Proof.

∥Ŝ − Σ∥ = ∥Ŝs + Ŝτ
e − Σs − Σe∥

≤ ∥ℓ1u1u
′
1 − λ̂1v̂1v̂

′
1∥+ ∥Ŝτ

e − Σe∥

= ∥ℓ1(u1u
′
1 − v̂1v̂

′
1) + (ℓ1 − λ̂1)v̂1v̂

′
1∥+Op

(
m
√
n−1s log p

)
= ℓ1OP(∥u1 − v̂1∥) +OP(n

−1/2)∥v̂1v̂′1∥+Op

(
m
√

n−1s log p
)

(17)

= OP(∥Eŝ∥) +OP(n
−1/2)∥v̂1v̂′1∥+Op

(
m
√
n−1s log p

)
(18)

= OP(∥Eŝ) +OP(n
−1/2)∥v̂1∥22 +Op

(
m
√
n−1s log p

)
(19)

= OP(∥Eŝ) +OP(n
−1/2) +Op

(
m
√
n−1s log p

)
, (20)

where (17) follows fromLemma 1 and the fact that ∥·∥ ≤ ∥·∥F for a squarematrices;

(19) follows from Corrolary 1.1; (19) holds by Lemma 2.

To complete the proof observe that in Equation 20 the first termbecomesOP

(√
s log p

n

)
byCorrolary 1.2, while the second term is asymptotically negligible under theAssump-

tion 2.

A.4 Weyl and Davis-Kahan

Denote eigenvectors and eigenvalues as ξi(·) and λi(·) respectively. For Hermitian p×p

matrices A, Â,

Proposition A.1.

max
i=1,...,p

|λi(Â)− λi(A)| ≤ ∥Â− A∥.

Proposition A.2.

∥∥∥ξi(Â)− ξi(A)
∥∥∥ ≤

√
2∥Â− A∥

min(|λi−1(Â)− λi(A)|, |λi+1(Â)− λi(A)|)
.
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A.5 T-Power Algorithm

Algorithm 1: Truncated Power Method Yuan and Zhang [2011]
Input: p× p PSD matrix A, initial estimate x0 ∈ Rp, dimension r.
t = 1
while not converged do

x′
t = Axt−1/∥Axt−1∥; /* Power iteration */

Ft = supp(x′
t, r) ; /* Support of indices */

x̂t = Truncate(x′
t, Ft); /* Truncate */

xt = x̂t/∥x̂t∥ ; /* Standardize */

t = t+ 1
end

A.6 DSCE Algorithm

Algorithm 2: Proposed Algorithm
Input: standardized p× n data matrix X , dimension r.
S = 1

n
X ′X ; /* Sample covariance */

Ŝs = T-Power(S) ; /* Rank-r Truncuted power method */

Ŝτ
e = τ(S − Ŝs) ; /* Adaptive Thresholding,(10) */

Output: p× p matrix Ŝ = Ŝs + Ŝτ
e .
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